scholarly journals Aberrant Patterns of Sensory-Evoked Activity in the Olfactory Bulb of LRRK2 Knockout Mice

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3212
Author(s):  
Andrea Maset ◽  
Marco Albanesi ◽  
Antonio di Soccio ◽  
Martina Canova ◽  
Marco dal Maschio ◽  
...  

The LRRK2 gene is the major genetic determinant of familiar Parkinson’s disease (PD). Leucine-rich repeat kinase 2 (LRRK2) is a multidomain protein involved in several intracellular signaling pathways. A wealth of evidence indicates that LRRK2 is enriched at the presynaptic compartment where it regulates vesicle trafficking and neurotransmitter release. However, whether the role of LRRK2 affects neuronal networks dynamic at systems level remains unknown. Addressing this question is critical to unravel the impact of LRRK2 on brain function. Here, combining behavioral tests, electrophysiological recordings, and functional imaging, we investigated neuronal network dynamics, in vivo, in the olfactory bulb of mice carrying a null mutation in LRRK2 gene (LRRK2 knockout, LRRK2 KO, mice). We found that LRRK2 KO mice exhibit olfactory behavioral deficits. At the circuit level, the lack of LRRK2 expression results in altered gamma rhythms and odorant-evoked activity with significant impairments, while the spontaneous activity exhibited limited alterations. Overall, our data in the olfactory bulb suggest that the multifaced role of LRRK2 has a strong impact at system level when the network is engaged in active sensory processing.

Author(s):  
Pinaki Chaudhuri ◽  
Andrew H. Smith ◽  
Priya Putta ◽  
Linda M. Graham ◽  
Michael A. Rosenbaum

Lipid oxidation products, including lysophosphatidylcholine (lysoPC) inhibit endothelial cell (EC) migration in vitro and impair EC healing of arterial injuries in vivo, in part by activating phosphatidylinositol 3-kinase (PI3K), which increases the externalization of canonical transient receptor potential 6 (TRPC6) channels and the subsequent increase in intracellular calcium. Inhibition of PI3K is a potential method to decrease TRPC6 activation and restore migration, but PI3K is involved in multiple intracellular signaling pathways and has multiple downstream effectors. The goal of this study is to identify the specific p110 catalytic subunit isoforms responsible for lysoPC-induced TRPC6 externalization to identify a target for intervention while minimizing impact on alternative signaling pathways. Down-regulation of the p110α and p110δ isoforms, but not the p110β or p110γ isoforms, with small interfering RNA significantly decreased phosphatidylinositol (3,4,5)-trisphosphate production and TRPC6 externalization, and significantly improved EC migration in the presence of lysoPC. These results identify an additional role of p110α in EC and reveal for the first time a specific role of p110δ in EC, providing a foundation for subsequent in vivo studies to investigate the impact of p110 isoform inhibition on arterial healing after injury.


Author(s):  
Gleb Nikolaevich Zyuz’kov ◽  
Larisa Arkad`evna Miroshnichenko ◽  
Elena Vladislavovna Simanina ◽  
Larisa Alexandrovna Stavrova ◽  
Tatyana Yur`evna Polykova

Abstract Objectives The development of approaches to the treatment of neurodegenerative diseases caused by alcohol abuse by targeted pharmacological regulation of intracellular signaling transduction of progenitor cells of nerve tissue is promising. We studied peculiarities of participation of NF-кB-, сАМР/РКА-, JAKs/STAT3-, ERK1/2-, p38-pathways in the regulation of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in the simulation of ethanol-induced neurodegeneration in vitro and in vivo. Methods In vitro, the role of signaling molecules (NF-кB, сАМР, РКА, JAKs, STAT3, ERK1/2, p38) in realizing the growth potential of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in ethanol-induced neurodegeneration modeled in vitro and in vivo was studied. To do this, the method of the pharmacological blockade with the use of selective inhibitors of individual signaling molecules was used. Results Several of fundamental differences in the role of certain intracellular signaling molecules (SM) in proliferation and specialization of NSC and NCP have been revealed. It has been shown that the effect of ethanol on progenitors is accompanied by the formation of a qualitatively new pattern of signaling pathways. Data have been obtained on the possibility of stimulation of nerve tissue regeneration in ethanol-induced neurodegeneration by NF-кB and STAT3 inhibitors. It has been found that the blockage of these SM stimulates NSC and NCP in conditions of ethanol intoxication and does not have a «negative» effect on the realization of the growth potential of intact progenitors (which will appear de novo during therapy). Conclusions The results may serve as a basis for the development of fundamentally new drugs to the treatment of alcoholic encephalopathy and other diseases of the central nervous system associated with alcohol abuse.


2017 ◽  
Vol 27 (12) ◽  
pp. 5784-5803 ◽  
Author(s):  
Jenq-Wei Yang ◽  
Pierre-Hugues Prouvot ◽  
Vicente Reyes-Puerta ◽  
Maik C Stüttgen ◽  
Albrecht Stroh ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Balázs Barkóczi ◽  
Gábor Juhász ◽  
Robert G. Averkin ◽  
Imre Vörös ◽  
Petra Vertes ◽  
...  

AMPA and NMDA receptors convey fast synaptic transmission in the CNS. Their relative contribution to synaptic output and phosphorylation state regulate synaptic plasticity. The AMPA receptor subunit GluA1 is central in synaptic plasticity. Phosphorylation of GluA1 regulates channel properties and trafficking. The firing rate averaged over several hundred ms is used to monitor cellular input. However, plasticity requires the timing of spiking within a few ms; therefore, it is important to understand how phosphorylation governs these events. Here, we investigate whether the GluA1 phosphorylation (p-GluA1) alters the spiking patterns of CA1 cellsin vivo. The antidepressant Tianeptine was used for inducing p-GluA1, which resulted in enhanced AMPA-evoked spiking. By comparing the spiking patterns of AMPA-evoked activity with matched firing rates, we show that the spike-trains after Tianeptine application show characteristic features, distinguishing from spike-trains triggered by strong AMPA stimulation. The interspike-interval distributions are different between the two groups, suggesting that neuronal output may differ when new inputs are activated compared to increasing the gain of previously activated receptors. Furthermore, we also show that NMDA evokes spiking with different patterns to AMPA spike-trains. These results support the role of the modulation of NMDAR/AMPAR ratio and p-GluA1 in plasticity and temporal coding.


Reproduction ◽  
2021 ◽  
Vol 161 (1) ◽  
pp. F1-F17
Author(s):  
Rocío Martínez-Aguilar ◽  
Lucy E Kershaw ◽  
Jane J Reavey ◽  
Hilary O D Critchley ◽  
Jacqueline A Maybin

The endometrium is a multicellular tissue that is exquisitely responsive to the ovarian hormones. The local mechanisms of endometrial regulation to ensure optimal function are less well characterised. Transient physiological hypoxia has been proposed as a critical regulator of endometrial function. Herein, we review the literature on hypoxia in the non-pregnant endometrium. We discuss the pros and cons of animal models, human laboratory studies and novel in vivo imaging for the study of endometrial hypoxia. These research tools provide mounting evidence of a transient hypoxic episode in the menstrual endometrium and suggest that endometrial hypoxia may be present at the time of implantation. This local hypoxia may modify the inflammatory environment, influence vascular remodelling and modulate endometrial proliferation to optimise endometrial function. Finally, we review current knowledge of the impact of this hypoxia on endometrial pathologies, with a focus on abnormal uterine bleeding. Throughout the manuscript areas for future research are highlighted with the aim of concentrating research efforts to maximise future benefits for women and society.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Chanwoo Kim ◽  
Hannah Song ◽  
Sandeep Kumar ◽  
Douglas Nam ◽  
Hyuk Sang Kwon ◽  
...  

Atherosclerosis is a multifactorial disease that arises from a combination of endothelial dysfunction and inflammation, occurring preferentially in arterial regions exposed to disturbed flow. Bone morphogenic protein-4 (BMP4) produced by disturbed flow induces inflammation, endothelial dysfunction and hypertension, suggesting the importance of BMPs in vascular biology and disease. BMPs bind to two different types of BMP receptors (BMPRI and II) to instigate intracellular signaling. Increasing evidences suggest a correlative role of BMP4 and atherosclerosis, but the role of BMP receptors especially BMPRII in atherosclerosis is still unclear and whether knockdown of BMPRII is the cause or the consequence of atherosclerosis is still not known. It is therefore, imperative to investigate the mechanisms by which BMPRII expression is modulated and its ramifications in atherosclerosis. Initially, we expected that knockdown of BMPRII will result in loss of pro-atherogenic BMP4 signaling and will thereby prevent atherosclerosis. Contrarily, we found that loss of BMPRII expression causes endothelial inflammation and atherosclerosis. Using BMPRII siRNA and BMPRII +/- mice, we found that BMPRII knockdown induces endothelial inflammation in a BMP-independent manner via mechanisms involving reactive oxygen species (ROS), NFκB, and NADPH oxidases. Further, BMPRII +/- ApoE -/- mice develop accelerated atherosclerosis compared to BMPRII +/+ ApoE -/- mice, suggesting loss of BMPRII may induce atherosclerosis. Interestingly, we found that multiple pro-atherogenic stimuli such as hypercholesterolemia, disturbed flow, pro-hypertensive angiotensin II, and pro-inflammatory cytokine, TNFα, downregulate BMPRII expression in endothelium, while anti-atherogenic stimuli such as stable flow and statin treatment upregulate its expression, both in vivo and in vitro . Moreover, we found that BMPRII expression is significantly diminished in human coronary advanced atherosclerotic lesions. These results suggest that BMPRII is a critical, anti-inflammatory and anti-atherogenic protein that is commonly targeted by multiple pro- and anti-atherogenic factors. BMPRII could be used as a novel diagnostic and therapeutic target in atherosclerosis.


Author(s):  
Stuart Aveyard ◽  
Paul Corthorn ◽  
Sean O’Connell

Chapter 3 examines debates about controls on consumer credit from late 1957 to 1964. As in Chapter 2, this chapter provides a fresh appraisal of Labour’s response to the affluent society. The party attempted to outflank the Conservatives on the issue of consumer protection. It embarrassed the Conservatives over their sluggish response to the Molony Committee’s recommendations on hire purchase legislation. The chapter also supports previous analyses that have identified the strong impact of new consumerist groups, particularly the Consumers’ Association and the weakening role of the Cooperative Movement. The issue of credit controls became more contentious. The Radcliffe Committee on monetary policy (1958) highlighted the weaknesses of the system. Of particular concern was the impact of controls on consumer durable industries. They were removed in 1958, but reintroduced, in 1960, following a dangerous rise in consumer indebtedness.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Linli Li ◽  
Yiqun He ◽  
Han Tang ◽  
Wei Mao ◽  
Haofei Ni ◽  
...  

Background. Angiogenesis is a prerequisite step to achieve the success of bone regeneration by tissue engineering technology. Previous studies have shown the role of cerebrospinal fluid pulsation (CSFP) stress in the reconstruction of tissue-engineered laminae. In this study, we investigated the role of CSFP stress in the angiogenesis of tissue-engineered laminae. Methods. For the in vitro study, a CSFP bioreactor was used to investigate the impact of CSFP stress on the osteogenic mesenchymal stem cells (MSCs). For the in vivo study, forty-eight New Zealand rabbits were randomly divided into the CSFP group and the Non-CSFP group. Tissue-engineered laminae (TEL) was made by hydroxyapatite-collagen I scaffold and osteogenic MSCs and then implanted into the lamina defect in the two groups. The angiogenic and osteogenic abilities of newborn laminae were examined with histological staining, qRT-PCR, and radiological analysis. Results. The in vitro study showed that CSFP stress could promote the vascular endothelial growth factor A (VEGF-A) expression levels of osteogenic MSCs. In the animal study, the expression levels of angiogenic markers in the CSFP group were higher than those in the Non-CSFP group; moreover, in the CSFP group, their expression levels on the dura mater surface, which are closer to the CSFP stress stimulation, were also higher than those on the paraspinal muscle surface. The expression levels of osteogenic markers in the CSFP group were also higher than those in the Non-CSFP group. Conclusion. CSFP stress could promote the angiogenic ability of osteogenic MSCs and thus promote the angiogenesis of tissue-engineered laminae. The pretreatment of osteogenic MSC with a CSFP bioreactor may have important implications for vertebral lamina reconstruction with a tissue engineering technique.


2019 ◽  
Vol 20 (11) ◽  
pp. 2675 ◽  
Author(s):  
Nicholas Wilson ◽  
Robert Steadman ◽  
Ilaria Muller ◽  
Mohd Draman ◽  
D. Aled Rees ◽  
...  

Hyaluronan (HA), an extra-cellular matrix glycosaminoglycan, may play a role in mesenchymal stem cell differentiation to fat but results using murine models and cell lines are conflicting. Our previous data, illustrating decreased HA production during human adipogenesis, suggested an inhibitory role. We have investigated the role of HA in adipogenesis and fat accumulation using human primary subcutaneous preadipocyte/fibroblasts (PFs, n = 12) and subjects of varying body mass index (BMI). The impact of HA on peroxisome proliferator-activated receptor gamma (PPARγ) expression was analysed following siRNA knockdown or HA synthase (HAS)1 and HAS2 overexpression. PFs were cultured in complete or adipogenic medium (ADM) with/without 4-methylumbelliferone (4-MU = HA synthesis inhibitor). Adipogenesis was evaluated using oil red O (ORO), counting adipogenic foci, and measurement of a terminal differentiation marker. Modulating HA production by HAS2 knockdown or overexpression increased (16%, p < 0.04) or decreased (30%, p = 0.01) PPARγ transcripts respectively. The inhibition of HA by 4-MU significantly enhanced ADM-induced adipogenesis with 1.52 ± 0.18- (ORO), 4.09 ± 0.63- (foci) and 2.6 ± 0.21-(marker)-fold increases compared with the controls, also increased PPARγ protein expression (40%, (p < 0.04)). In human subjects, circulating HA correlated negatively with BMI and triglycerides (r = −0.396 (p = 0.002), r = −0.269 (p = 0.038), respectively), confirming an inhibitory role of HA in human adipogenesis. Thus, enhancing HA action may provide a therapeutic target in obesity.


Blood ◽  
2020 ◽  
Vol 136 (4) ◽  
pp. 501-515 ◽  
Author(s):  
Kunpeng Wu ◽  
Yan Yuan ◽  
Huihui Yu ◽  
Xin Dai ◽  
Shu Wang ◽  
...  

Abstract The diversity of the human microbiome heralds the difference of the impact that gut microbial metabolites exert on allogenic graft-versus-host (GVH) disease (GVHD), even though short-chain fatty acids and indole were demonstrated to reduce its severity. In this study, we dissected the role of choline-metabolized trimethylamine N-oxide (TMAO) in the GVHD process. Either TMAO or a high-choline diet enhanced the allogenic GVH reaction, whereas the analog of choline, 3,3-dimethyl-1-butanol reversed TMAO-induced GVHD severity. Interestingly, TMAO-induced alloreactive T-cell proliferation and differentiation into T-helper (Th) subtypes was seen in GVHD mice but not in in vitro cultures. We thus investigated the role of macrophage polarization, which was absent from the in vitro culture system. F4/80+CD11b+CD16/32+ M1 macrophage and signature genes, IL-1β, IL-6, TNF-α, CXCL9, and CXCL10, were increased in TMAO-induced GVHD tissues and in TMAO-cultured bone marrow–derived macrophages (BMDMs). Inhibition of the NLRP3 inflammasome reversed TMAO-stimulated M1 features, indicating that NLRP3 is the key proteolytic activator involved in the macrophage’s response to TMAO stimulation. Consistently, mitochondrial reactive oxygen species and enhanced NF-κB nuclear relocalization were investigated in TMAO-stimulated BMDMs. In vivo depletion of NLRP3 in GVHD recipients not only blocked M1 polarization but also reversed GVHD severity in the presence of TMAO treatment. In conclusion, our data revealed that TMAO-induced GVHD progression resulted from Th1 and Th17 differentiation, which is mediated by the polarized M1 macrophage requiring NLRP3 inflammasome activation. It provides the link among the host choline diet, microbial metabolites, and GVH reaction, shedding light on alleviating GVHD by controlling choline intake.


Sign in / Sign up

Export Citation Format

Share Document