scholarly journals Mitophagy in Yeast: Molecular Mechanism and Regulation

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3569
Author(s):  
Aleksei Innokentev ◽  
Tomotake Kanki

Mitophagy is a type of autophagy that selectively degrades mitochondria. Mitochondria, known as the “powerhouse of the cell”, supply the majority of the energy required by cells. During energy production, mitochondria produce reactive oxygen species (ROS) as byproducts. The ROS damages mitochondria, and the damaged mitochondria further produce mitochondrial ROS. The increased mitochondrial ROS damages cellular components, including mitochondria themselves, and leads to diverse pathologies. Accordingly, it is crucial to eliminate excessive or damaged mitochondria to maintain mitochondrial homeostasis, in which mitophagy is believed to play a major role. Recently, the molecular mechanism and physiological role of mitophagy have been vigorously studied in yeast and mammalian cells. In yeast, Atg32 and Atg43, mitochondrial outer membrane proteins, were identified as mitophagy receptors in budding yeast and fission yeast, respectively. Here we summarize the molecular mechanisms of mitophagy in yeast, as revealed by the analysis of Atg32 and Atg43, and review recent progress in our understanding of mitophagy induction and regulation in yeast.

2019 ◽  
Vol 81 (1) ◽  
pp. 453-482 ◽  
Author(s):  
Diane M. Ward ◽  
Suzanne M. Cloonan

Mitochondria are an iconic distinguishing feature of eukaryotic cells. Mitochondria encompass an active organellar network that fuses, divides, and directs a myriad of vital biological functions, including energy metabolism, cell death regulation, and innate immune signaling in different tissues. Another crucial and often underappreciated function of these dynamic organelles is their central role in the metabolism of the most abundant and biologically versatile transition metals in mammalian cells, iron. In recent years, cellular and animal models of mitochondrial iron dysfunction have provided vital information in identifying new proteins that have elucidated the pathways involved in mitochondrial homeostasis and iron metabolism. Specific signatures of mitochondrial iron dysregulation that are associated with disease pathogenesis and/or progression are becoming increasingly important. Understanding the molecular mechanisms regulating mitochondrial iron pathways will help better define the role of this important metal in mitochondrial function and in human health and disease.


2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


2013 ◽  
Vol 288 (23) ◽  
pp. 16451-16459 ◽  
Author(s):  
Thomas Becker ◽  
Susanne E. Horvath ◽  
Lena Böttinger ◽  
Natalia Gebert ◽  
Günther Daum ◽  
...  

The mitochondrial outer membrane contains proteinaceous machineries for the import and assembly of proteins, including TOM (translocase of the outer membrane) and SAM (sorting and assembly machinery). It has been shown that the dimeric phospholipid cardiolipin is required for the stability of TOM and SAM complexes and thus for the efficient import and assembly of β-barrel proteins and some α-helical proteins of the outer membrane. Here, we report that mitochondria deficient in phosphatidylethanolamine (PE), the second non-bilayer-forming phospholipid, are impaired in the biogenesis of β-barrel proteins, but not of α-helical outer membrane proteins. The stability of TOM and SAM complexes is not disturbed by the lack of PE. By dissecting the import steps of β-barrel proteins, we show that an early import stage involving translocation through the TOM complex is affected. In PE-depleted mitochondria, the TOM complex binds precursor proteins with reduced efficiency. We conclude that PE is required for the proper function of the TOM complex.


Author(s):  
Cong He ◽  
Luoyan Sheng ◽  
Deshen Pan ◽  
Shuai Jiang ◽  
Li Ding ◽  
...  

High-grade glioma is one of the most lethal human cancers characterized by extensive tumor heterogeneity. In order to identify cellular and molecular mechanisms that drive tumor heterogeneity of this lethal disease, we performed single-cell RNA sequencing analysis of one high-grade glioma. Accordingly, we analyzed the individual cellular components in the ecosystem of this tumor. We found that tumor-associated macrophages are predominant in the immune microenvironment. Furthermore, we identified five distinct subpopulations of tumor cells, including one cycling, two OPC/NPC-like and two MES-like cell subpopulations. Moreover, we revealed the evolutionary transition from the cycling to OPC/NPC-like and MES-like cells by trajectory analysis. Importantly, we found that SPP1/CD44 interaction plays a critical role in macrophage-mediated activation of MES-like cells by exploring the cell-cell communication among all cellular components in the tumor ecosystem. Finally, we showed that high expression levels of both SPP1 and CD44 correlate with an increased infiltration of macrophages and poor prognosis of glioma patients. Taken together, this study provided a single-cell atlas of one high-grade glioma and revealed a critical role of macrophage-mediated SPP1/CD44 signaling in glioma progression, indicating that the SPP1/CD44 axis is a potential target for glioma treatment.


2012 ◽  
Vol 23 (20) ◽  
pp. 3948-3956 ◽  
Author(s):  
Maria Bohnert ◽  
Lena-Sophie Wenz ◽  
Ralf M. Zerbes ◽  
Susanne E. Horvath ◽  
David A. Stroud ◽  
...  

Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It is unknown, however, whether MINOS plays a role in the biogenesis of outer membrane proteins. We have dissected the interaction of MINOS with TOM and SAM and report that MINOS binds to both translocases independently. MINOS binds to the SAM complex via the conserved polypeptide transport–associated domain of Sam50. Mitochondria lacking mitofilin, the large core subunit of MINOS, are impaired in the biogenesis of β-barrel proteins of the outer membrane, whereas mutant mitochondria lacking any of the other five MINOS subunits import β-barrel proteins in a manner similar to wild-type mitochondria. We show that mitofilin is required at an early stage of β-barrel biogenesis that includes the initial translocation through the TOM complex. We conclude that MINOS interacts with TOM and SAM independently and that the core subunit mitofilin is involved in biogenesis of outer membrane β-barrel proteins.


2020 ◽  
pp. jcs.251835
Author(s):  
Azia S. Evans ◽  
Nicholas J. Lennemann ◽  
Carolyn B. Coyne

Autophagy is a degradative cellular pathway that targets cytoplasmic contents and organelles for turnover by the lysosome. Various autophagy pathways play key roles in the clearance of viral infections, and many families of viruses have developed unique methods for avoiding degradation. Some positive stranded RNA viruses, such as enteroviruses and flaviviruses, usurp the autophagic pathway to promote their own replication. We previously identified the endoplasmic reticulum-localized protein BPIFB3 as an important negative regulator of non-canonical autophagy that uniquely impacts the replication of enteroviruses and flaviviruses. Here, we find that many components of the canonical autophagy machinery are not required for BPIFB3 depletion induced autophagy and identify the host factors that facilitate its role in the replication of enteroviruses and flaviviruses. Using proximity-dependent biotinylation (BioID) followed by mass spectrometry, we identify ARFGAP1 and TMED9 as two cellular components that interact with BPIFB3 to regulate autophagy and viral replication. Importantly, our data demonstrate that non-canonical autophagy in mammalian cells can be controlled outside of the traditional pathway regulators and define the role of two proteins in BPIFB3 depletion mediated non-canonical autophagy.


2014 ◽  
Vol 369 (1650) ◽  
pp. 20130462 ◽  
Author(s):  
Rosa M. Rios

A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis -face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 377-377
Author(s):  
Sandra Stehling-Sun ◽  
Rebecca Jimenez ◽  
Andrew Hu ◽  
Fernando D. Camargo

Abstract MEF2 transcription factors are well-established regulators of muscle development. Recently, work in murine models has identified one of these factors, Mef2c, as an important regulator in the pathogenesis and the development of acute myeloid leukemia (AML). However, little is know about the molecular mechanism and physiological role of Mef2c in hematopoiesis. Using conditional gene ablation, we have discovered an unexpected role for MEF2c in hematopoietic stem cells (HSCs), where it is required for pan-lymphoid commitment. Competitive repopulation experiments using Mef2c-null HSCs deleted by means of the Mx1-Cre/poly(IC) approach, revealed completely normal monocytic, granulocytic and erythroid differentiation capacities by mutant cells. Generation and renewal of myeloid progenitors and HSCs was also normal. However, contribution to lymphoid lineages (T-cells, B-cells and natural killer cells) was dramatically reduced. Mef2c-deleted HSCs were able to generate lymphoid primed multipotent progenitors (LMPPs) and expressed normal levels of Flt-3 and the master lymphoid regulator ikaros. However, expression of the interleukin-7 receptor (IL-7R) and the number of phenotypically defined common lymphoid progenitors (CLPs) were substantially reduced. We have found two conserved Mef2c-binding sites in the promoter of the Il-7R gene, indicating that Mef2c could directly regulate Il-7R transcription. This and other potential molecular mechanisms of Mef2c-mediated lymphoid commitment will be discussed. We have also studied the effects of lineage-specific deletion of Mef2c in both myeloid and lymphoid populations. Whereas deletion in myelomonocytic cells using the LysM-Cre strain resulted in no anomalies, B-cell specific ablation with the CD19-Cre line revealed major phenotypical and functional abnormalities. CD19-Cre:Mef2cf/f mice show impaired germinal center formation and reduced antibody production in response to T-cell dependent antigens. In addition Mef2c-null mature B-cells fail to express the mature marker CD23, the low affinity receptor for IgE, which we show is a direct transcriptional target. As a consequence of CD23 reduction, CD19-Cre:Mef2cf/f mice have increased IgE production, thus indicating a potential role of Mef2c in allergic disease. Our work here sheds new light on the molecular mechanisms of lymphopoiesis and identifies MEF2 factors as critical hematopoietic transcriptional regulators.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4256-4256
Author(s):  
Yuichi Ishikawa ◽  
Manami Maeda ◽  
Min Li ◽  
Sung-Uk Lee ◽  
Julie Teruya Feldstein ◽  
...  

Abstract Abstract 4256 Clathrin assembly lymphoid myeloid leukemia protein (CALM, also known as PICALM) is ubiquitously expressed in mammalian cells and implicated in clathrin dependent endocytosis (CDE). The CALM gene is the target of the t(10;11)(p13;q14-21) translocation, which is rare, but recurrently observed mutation in multiple types of acute leukemia. While the resultant CALM/AF10 fusion gene could act as an oncogene in vitro and in vivo in animal models, molecular mechanisms by which the fusion protein exerts its oncogenic activity remains elusive. Since CDE is implicated in the regulation of growth factor/cytokine signals, we hypothesized that the CALM/AF10 fusion oncoprotein could affect normal Calm function, leading to leukemogenesis. To determine the role of CALM and CDE in normal hematopoiesis, we generated and characterized both conventional (Calm+/−) and conditional (CalmF/F Mx1Cre+) Calm knockout mutants. While we didn't observe a gross defect in the heterozygous mutant (Calm+/−), homozygous deletion of the Calm gene (Calm-/-) resulted in late embryonic lethality. Total numbers of fetal liver (FL) cells were significantly reduced in Calm-/-embryos compared to that of control due to inefficient erythropoiesis. Proportions of mature erythroblasts (CD71-Ter119+) in FL were significantly reduced in the absence of the Calm gene. Furthermore, Calm deficient Megakaryocyte-Erythroid Progenitors (MEPs) gave rise to less CFU-E colonies when seeded in methyl cellulose plates, suggesting that Calm is required for terminal erythroid differentiation in a cell autonomous manner. To determine the role of Calm in adult hematopoiesis, we analyzed peripheral blood (PB), bone marrow (BM) and spleen of CalmF/F Mx1Cre+ mice after pIpC injection. CalmF/F Mx1Cre+ mice demonstrated hypochromic anemia, T-lymphocytopenia and thrombocytosis one month after pIpC injection. Levels of plasma transferrin and ferritin were intact in CalmF/F Mx1Cre+ mice, while plasma iron levels were increased, indicating that iron uptake is impaired in Calm deficient erythroblasts. We observed significant reduction of mature erythroblasts and erythrocytes in both BM and spleen with concomitant increase of immature erythroblasts (CD71+Ter119+) in CalmF/F Mx1Cre+ mice. The increased population mainly consists of CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts, and Benzidine staining of PB and splenic erythroblasts revealed reduced hemoglobinization in Calm deficient erythroblasts. To examine the global changes in transcriptome of CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts with or without the Calm gene, we compared mRNA expression profile by gene chip microarray analysis. Over 400 genes, including genes associated with iron metabolism and CDE pathway, were up- or down-regulated more than 1.5-fold in Calm deficient polychromatophilic erythroblasts as compared to control. Genes Set Enrichment Analysis (GSEA) revealed that multiple metabolic pathways were downregulated in Calm deficient polychromatophilic erythroblasts. Calm deficient CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts demonstrated a defect in cellular proliferation revealed by cell cycle analysis. Transferrin receptor 1 (TFR1, CD71) is highly expressed in rapidly dividing cells and erythroblasts, and uptake of iron-bound transferrin through TFR1 is the main pathway of iron intake to erythroid precursors. Since CDE is implicated in TFR1 endocytosis, we next examined surface expression levels of CD71 in Calm deficient erythroid progenitors and erythroblasts. While CD71 is normally expressed at low level in early stage of megakaryo/erythroid progenitors and highly expressed in CFU-E through polychromatophilic erythroblasts, its expression was dramatically up-regulated throughout the erythroid development in CalmF/F Mx1Cre+ mice. Up-regulation of surface CD71 expression was also evident in K562 erythroid leukemia cell lines upon ShRNA-mediated CALM knockdown. Taken together, our data indicate that CALM plays an essential role in terminal erythroid differentiation via regulating TFR1 endocytosis. Since iron is required for both erythroblast proliferation and hemoglobinization, Calm deficiency significantly impacts erythroid development at multiple levels. Disclosures: Naoe: Chugai Pharm. Co.: Research Funding; Zenyaku-Kogyo Co.: Research Funding; Kyowa-Kirin Co.: Research Funding; Dainippon-Sumitomo Pharm. Co.: Research Funding; Novartis Pharm. Co.: Research Funding; Janssen Pharm. Co.: Research Funding.


2013 ◽  
Vol 55 ◽  
pp. 133-151 ◽  
Author(s):  
G. Vignir Helgason ◽  
Tessa L. Holyoake ◽  
Kevin M. Ryan

Autophagy is a process that takes place in all mammalian cells and ensures homoeostasis and quality control. The term autophagy [self (auto)-eating (phagy)] was first introduced in 1963 by Christian de Duve, who discovered the involvement of lysosomes in the autophagy process. Since then, substantial progress has been made in understanding the molecular mechanism and signalling regulation of autophagy and several reviews have been published that comprehensively summarize these findings. The role of autophagy in cancer has received a lot of attention in the last few years and autophagy modulators are now being tested in several clinical trials. In the present chapter we aim to give a brief overview of recent findings regarding the mechanism and key regulators of autophagy and discuss the important physiological role of mammalian autophagy in health and disease. Particular focus is given to the role of autophagy in cancer prevention, development and in response to anticancer therapy. In this regard, we also give an updated list and discuss current clinical trials that aim to modulate autophagy, alone or in combination with radio-, chemo- or targeted therapy, for enhanced anticancer intervention.


Sign in / Sign up

Export Citation Format

Share Document