scholarly journals Mitochondrial Dysfunction as a Hallmark of Environmental Injury

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Carolina Duarte-Hospital ◽  
Arnaud Tête ◽  
François Brial ◽  
Louise Benoit ◽  
Meriem Koual ◽  
...  

Environmental factors including diet, sedentary lifestyle and exposure to pollutants largely influence human health throughout life. Cellular and molecular events triggered by an exposure to environmental pollutants are extremely variable and depend on the age, the chronicity and the doses of exposure. Only a fraction of all relevant mechanisms involved in the onset and progression of pathologies in response to toxicants has probably been identified. Mitochondria are central hubs of metabolic and cell signaling responsible for a large variety of biochemical processes, including oxidative stress, metabolite production, energy transduction, hormone synthesis, and apoptosis. Growing evidence highlights mitochondrial dysfunction as a major hallmark of environmental insults. Here, we present mitochondria as crucial organelles for healthy metabolic homeostasis and whose dysfunction induces critical adverse effects. Then, we review the multiple mechanisms of action of pollutants causing mitochondrial toxicity in link with chronic diseases. We propose the Aryl hydrocarbon Receptor (AhR) as a model of “exposome receptor”, whose activation by environmental pollutants leads to various toxic events through mitochondrial dysfunction. Finally, we provide some remarks related to mitotoxicity and risk assessment.

Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 60
Author(s):  
Anne Stinn ◽  
Jens Furkert ◽  
Stefan H. E. Kaufmann ◽  
Pedro Moura-Alves ◽  
Michael Kolbe

The aryl hydrocarbon receptor (AhR) is a highly conserved cellular sensor of a variety of environmental pollutants and dietary-, cell- and microbiota-derived metabolites with important roles in fundamental biological processes. Deregulation of the AhR pathway is implicated in several diseases, including autoimmune diseases and cancer, rendering AhR a promising target for drug development and host-directed therapy. The pharmacological intervention of AhR processes requires detailed information about the ligand binding properties to allow specific targeting of a particular signaling process without affecting the remaining. Here, we present a novel microscale thermophoresis-based approach to monitoring the binding of purified recombinant human AhR to its natural ligands in a cell-free system. This approach facilitates a precise identification and characterization of unknown AhR ligands and represents a screening strategy for the discovery of potential selective AhR modulators.


1993 ◽  
Vol 294 (1) ◽  
pp. 95-101 ◽  
Author(s):  
E C Henry ◽  
T A Gasiewicz

The binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to the aryl hydrocarbon receptor (AhR) elicits a sequence of poorly defined molecular events that ultimately yield a heteromeric transformed AhR that is active as a transcription factor. We have previously developed a model of the ligand-initiated transformation of the AhR to the DNA-binding state based on characterization of several forms of the AhR with respect to their physicochemical properties and DNA-binding affinities. The present studies were designed to determine whether, and at what stage, this process of transformation alters the receptor's affinity for TCDD. In rat hepatic cytosol, approx. 10% of the TCDD specifically bound to the AhR rapidly dissociated (t1/2 approximately 1 h), while the remainder was only slowly dissociable (t1/2 approximately 70 h). The isolated DNA-binding forms of the receptor (monomeric and transformed) bound TCDD very tightly (t1/2 > 100 h), whereas TCDD was dissociable from the non-DNA-binding receptor form(s). A lower incubation temperature (0-4 degrees C) and the presence of molybdate partially stabilized the non-DNA-binding fraction of the TCDD.receptor complex and also enhanced TCDD dissociation in crude cytosol. Immunoprecipitation of the different AhR forms with an anti-AhR antibody and immunoblotting with antibody to the 90 kDa heat-shock protein (hsp90) demonstrated that hsp90 was associated with the unoccupied receptor complex as well as with a fraction of the non-DNA-binding TCDD.receptor complex; isolated DNA-binding forms did not contain detectable hsp90. We conclude that while hsp90 remains associated with the AhR, TCDD is readily dissociable; following release of hsp90, however, TCDD becomes very tightly bound, and remains so upon completion of transformation.


2018 ◽  
Vol 19 (12) ◽  
pp. 3762 ◽  
Author(s):  
Anaïs Wakx ◽  
Margaux Nedder ◽  
Céline Tomkiewicz-Raulet ◽  
Jessica Dalmasso ◽  
Audrey Chissey ◽  
...  

The human placenta is an organ between the blood of the mother and the fetus, which is essential for fetal development. It also plays a role as a selective barrier against environmental pollutants that may bypass epithelial barriers and reach the placenta, with implications for the outcome of pregnancy. The aryl hydrocarbon receptor (AhR) is one of the most important environmental-sensor transcription factors and mediates the metabolism of a wide variety of xenobiotics. Nevertheless, the identification of dietary and endogenous ligands of AhR suggest that it may also fulfil physiological functions with which pollutants may interfere. Placental AhR expression and activity is largely unknown. We established the cartography of AhR expression at transcript and protein levels, its cellular distribution, and its transcriptional activity toward the expression of its main target genes. We studied the profile of AhR expression and activity during different pregnancy periods, during trophoblasts differentiation in vitro, and in a trophoblast cell line. Using diverse methods, such as cell fractionation and immunofluorescence microscopy, we found a constitutive nuclear localization of AhR in every placental model, in the absence of any voluntarily-added exogenous activator. Our data suggest an intrinsic activation of AhR due to the presence of endogenous placental ligands.


Author(s):  
Märt-Erik Mäeots ◽  
Byungjin Lee ◽  
Andrea Nans ◽  
Seung-Geun Jeong ◽  
Mohammad M. N. Esfahani ◽  
...  

AbstractMechanistic understanding of biochemical reactions requires structural and kinetic characterization of the underlying chemical processes. However, no single experimental technique can provide this information in a broadly applicable manner and thus structural studies of static macromolecules are often complemented by biophysical analysis. Moreover, the common strategy of utilizing mutants or crosslinking probes to stabilize otherwise short-lived reaction intermediates is prone to trapping off-pathway artefacts and precludes determining the order of molecular events. To overcome these limitations and allow visualisation of biochemical processes at near-atomic spatial resolution and millisecond time scales, we developed a time-resolved sample preparation method for cryo-electron microscopy (trEM). We integrated a modular microfluidic device, featuring a 3D-mixing unit and a delay line of variable length, with a gas-assisted nozzle and motorised plunge-freeze set-up that enables automated, fast, and blot-free sample vitrification. This sample preparation not only preserves high-resolution structural detail but also substantially improves protein distribution across the vitreous ice. We validated the method by examining the formation of RecA filaments on single-stranded DNA. We could reliably visualise reaction intermediates of early filament growth across three orders of magnitude on sub-second timescales. Quantification of the trEM data allowed us to characterize the kinetics of RecA filament growth. The trEM method reported here is versatile, easy to reproduce and thus readily adaptable to a broad spectrum of fundamental questions in biology.


Biodiscovery ◽  
2019 ◽  
Vol 22 ◽  
Author(s):  
Myriam El Helou ◽  
Pascale A. Cohen ◽  
Mona Diab-Assaf ◽  
Sandra Ghayad

Exposure to environmental pollutants can modulate many biological and molecular processes such as gene expression, gene repair mechanisms, hormone production and function and inflammation, resulting in adverse effects on human health including the occurrence and development of different types of cancer. Carcinogenesis is a complex and long process, taking place in multiple stages and is affected by multiple factors. Some environmental molecules are genotoxic, able to damage the DNA or to induce mutations and changes in gene expression acting as initiators of carcinogenesis. Other molecules called xenoestrogens can promote carcinogenesis by their mitogenic effects by possessing estrogenic-like activities and consequently acting as endocrine disruptors causing multiple alterations in cellular signal transduction pathways. In this review, we focus on recent research on environmental chemicals-driven molecular functions in human cancers. For this purpose, we will be discussing the case of two receptors in mediating environmental pollutants effects: the established nuclear receptor, the Aryl hydrocarbon receptor (AhR) and the emerging membrane receptor, G-protein coupled estrogen receptor 1 (GPER1).


2019 ◽  
Vol 20 (5) ◽  
pp. 1065 ◽  
Author(s):  
Elisabet Teixidó ◽  
Marta Barenys ◽  
Ester Piqué ◽  
Joan Llobet ◽  
Jesús Gómez-Catalán

The developing cardiovascular system of zebrafish is a sensitive target for many environmental pollutants, including dioxin-like compounds and pesticides. Some polychlorinated biphenyls (PCBs) can compromise the cardiovascular endothelial function by activating oxidative stress-sensitive signaling pathways. Therefore, we exposed zebrafish embryos to PCB126 or to several redox-modulating chemicals to study their ability to modulate the dysmorphogenesis produced by PCB126. PCB126 produced a concentration-dependent induction of pericardial edema and circulatory failure, and a concentration-dependent reduction of cardiac output and body length at 80 hours post fertilization (hpf). Among several modulators tested, the effects of PCB126 could be both positively and negatively modulated by different compounds; co-treatment with α-tocopherol (vitamin E liposoluble) prevented the adverse effects of PCB126 in pericardial edema, whereas co-treatment with sodium nitroprusside (a vasodilator compound) significantly worsened PCB126 effects. Gene expression analysis showed an up-regulation of cyp1a, hsp70, and gstp1, indicative of PCB126 interaction with the aryl hydrocarbon receptor (AhR), while the transcription of antioxidant genes (sod1, sod2; cat and gpx1a) was not affected. Further studies are necessary to understand the role of oxidative stress in the developmental toxicity of low concentrations of PCB126 (25 nM). Our results give insights into the use of zebrafish embryos for exploring mechanisms underlying the oxidative potential of environmental pollutants.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 589 ◽  
Author(s):  
Christoph F. A. Vogel ◽  
Yasuhiro Ishihara ◽  
Claire E. Campbell ◽  
Sarah Y. Kado ◽  
Aimy Nguyen-Chi ◽  
...  

The aryl hydrocarbon receptor (AhR) is known for mediating the toxicity of environmental pollutants such as dioxins and numerous dioxin-like compounds, and is associated with the promotion of various malignancies, including lymphoma. The aryl hydrocarbon receptor repressor (AhRR), a ligand-independent, transcriptionally inactive AhR-like protein is known to repress AhR signaling through its ability to compete with the AhR for dimerization with the AhR nuclear translocator (ARNT). While AhRR effectively blocks AhR signaling, several aspects of the mechanism of AhRR’s functions are poorly understood, including suppression of inflammatory responses and its putative role as a tumor suppressor. In a transgenic mouse that overexpresses AhRR (AhRR Tg) we discovered that these mice suppress 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)- and inflammation-induced tumor growth after subcutaneous challenge of EL4 lymphoma cells. Using mouse embryonic fibroblasts (MEF) we found that AhRR overexpression suppresses the AhR-mediated anti-apoptotic response. The AhRR-mediated inhibition of apoptotic resistance was associated with a suppressed expression of interleukin (IL)-1β and cyclooxygenase (COX)-2, which was dependent on activation of protein kinase A (PKA) and the CAAT-enhancer-binding protein beta (C/EBPβ). These results provide mechanistic insights into the role of the AhRR to suppress inflammation and highlight the AhRR as a potential therapeutic target to suppress tumor growth.


1995 ◽  
Vol 22 (4) ◽  
pp. 647 ◽  
Author(s):  
MK Morell ◽  
S Rahman ◽  
SL Abrahams ◽  
R Appels

Starch is a key constituent of plant products finding utility as both a major component of a wide range of staple and processed foods, and as a feedstock for industrial processes. While there has traditionally been a focus on the quantity of starch production, starch quality is of increasing importance to the end-user as consumer demands become more sophisticated and as the range of industrial applications of starch broadens. Determinants of starch quality include the amylose to amylopectin ratio, the distribution of molecular structures within these fractions, and the packaging of the starch in granules. The biochemical processes involved in the transformation of the sucrose delivered to the endosperm cytosol to starch in the amyloplast are understood in broad outline. The importance of particular isoenzymes or processes to the production of starches of specific structures are, however, not well understood. This paper reviews aspects of the physiology, biochemistry and molecular biology of starch in plants, with an emphasis on the synthesis of starch in the cereal endosperm. Progress in understanding the linkages between the molecular events in starch synthesis and developing strategies for the manipulation of starch quantity and quality in cereals are discussed.


Sign in / Sign up

Export Citation Format

Share Document