scholarly journals The Expanding Role of Vesicles Containing Aquaporins

Cells ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 179 ◽  
Author(s):  
M Martinez-Ballesta ◽  
Paula Garcia-Ibañez ◽  
Lucía Yepes-Molina ◽  
Juan Rios ◽  
Micaela Carvajal

In animals and plants, membrane vesicles containing proteins have been defined as key for biological systems involving different processes such as trafficking or intercellular communication. Docking and fusion of vesicles to the plasma membrane occur in living cells in response to different stimuli, such as environmental changes or hormones, and therefore play an important role in cell homeostasis as vehicles for certain proteins or other substances. Because aquaporins enhance the water permeability of membranes, their role as proteins immersed in vesicles formed of natural membranes is a recent topic of study. They regulate numerous physiological processes and could hence serve new biotechnological purposes. Thus, in this review, we have explored the physiological implications of the trafficking of aquaporins, the mechanisms that control their transit, and the proteins that coregulate the migration. In addition, the importance of exosomes containing aquaporins in the cell-to-cell communication processes in animals and plants have been analyzed, together with their potential uses in biomedicine or biotechnology. The properties of aquaporins make them suitable for use as biomarkers of different aquaporin-related diseases when they are included in exosomes. Finally, the fact that these proteins could be immersed in biomimetic membranes opens future perspectives for new biotechnological applications.

2020 ◽  
Author(s):  
Johan Pijnenborg ◽  
Emiel Rossing ◽  
Marek Noga ◽  
Willem Titulaer ◽  
Raisa Veizaj ◽  
...  

Fucose sugars are expressed on mammalian cell membranes as part of glycoconjugates and mediates essential physiological processes. The aberrant expression of fucosylated glycans has been linked to pathologies such as cancer, inflammation, infection, and genetic disorders. Tools to modulate fucose expression on living cells are needed to elucidate the biological role of fucose sugars and the development of potential therapeutics. Herein, we report a novel class of fucosylation inhibitors directly targeting de novo GDP-fucose biosynthesis. We demonstrate that cell permeable fluorinated mannoside 1-phosphate derivatives (Fucotrim I & II) are metabolic prodrugs that are metabolized to their respective GDP-mannose derivatives and efficiently inhibit cellular fucosylation.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 846 ◽  
Author(s):  
Oscar F. Sánchez ◽  
Andrea V. Rodríguez ◽  
José M. Velasco-España ◽  
Laura C. Murillo ◽  
Jhon-Jairo Sutachan ◽  
...  

Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer’s, Parkinson’s, and Huntington’s diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jie Chen ◽  
Chonghui Li ◽  
Liangan Chen

Microvesicles (MVs) are membrane vesicles that are released by many types of cells and have recently been considered important mediators of cell-to-cell communication. MVs serve as a vehicle to transfer proteins and messenger RNA and microRNA (miRNA) to distant cells, which alters the gene expression, proliferation, and differentiation of the recipient cells. Several studies have demonstrated that mesenchymal stem cells (MSCs) have the capacity to reverse acute and chronic lung injury in different experimental models through paracrine mechanisms. This paracrine action may be partially accounted for by MVs that are derived from MSCs. MSC-derived MVs may confer a stem cell-like phenotype to injured cells with the consequent activation of self-regenerative programmers. In this review, we summarize the characteristics and biological activities of MSC-derived MVs, and we describe their potential in novel therapeutic approaches in regenerative medicine to repair damaged tissues. Additionally, we provide an overview of studies that have assessed the role of MSC-derived MVs in lung diseases, including the mechanisms that may account for their therapeutic potential. Finally, we discuss the clinical use of MSC-derived MVs with several suggestions for enhancing their therapeutic efficiency.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Johan F. A. Pijnenborg ◽  
Emiel Rossing ◽  
Jona Merx ◽  
Marek J. Noga ◽  
Willem H. C. Titulaer ◽  
...  

AbstractThe sugar fucose is expressed on mammalian cell membranes as part of glycoconjugates and mediates essential physiological processes. The aberrant expression of fucosylated glycans has been linked to pathologies such as cancer, inflammation, infection, and genetic disorders. Tools to modulate fucose expression on living cells are needed to elucidate the biological role of fucose sugars and the development of potential therapeutics. Herein, we report a class of fucosylation inhibitors directly targeting de novo GDP-fucose biosynthesis via competitive GMDS inhibition. We demonstrate that cell permeable fluorinated rhamnose 1-phosphate derivatives (Fucotrim I & II) are metabolic prodrugs that are metabolized to their respective GDP-mannose derivatives and efficiently inhibit cellular fucosylation.


Author(s):  
Johan Pijnenborg ◽  
Emiel Rossing ◽  
Marek Noga ◽  
Willem Titulaer ◽  
Raisa Veizaj ◽  
...  

Fucose sugars are expressed on mammalian cell membranes as part of glycoconjugates and mediates essential physiological processes. The aberrant expression of fucosylated glycans has been linked to pathologies such as cancer, inflammation, infection, and genetic disorders. Tools to modulate fucose expression on living cells are needed to elucidate the biological role of fucose sugars and the development of potential therapeutics. Herein, we report a novel class of fucosylation inhibitors directly targeting de novo GDP-fucose biosynthesis. We demonstrate that cell permeable fluorinated mannoside 1-phosphate derivatives (Fucotrim I & II) are metabolic prodrugs that are metabolized to their respective GDP-mannose derivatives and efficiently inhibit cellular fucosylation.


2019 ◽  
Vol 20 (18) ◽  
pp. 4337 ◽  
Author(s):  
Colletti ◽  
Galardi ◽  
Santis ◽  
Guidelli ◽  
Giannatale ◽  
...  

: Systemic sclerosis (SSc) is a rare autoimmune disease, characterized by vasculopathy and fibrosis of the skin and internal organs. This disease is still considered incurable and is associated with a high risk of mortality, which is related to fibrotic events. An early diagnosis is useful for preventing complications, and targeted therapies reduce disease progression and ameliorate patients’ quality of life. Nevertheless, there are no validated biomarkers for early diagnosis with predictive prognostic value. Exosomes are membrane vesicles, transporting proteins and nucleic acids that may be delivered to target cells, which influences cellular behavior. They play important roles in cell–cell communication, both in physiological and pathological conditions, and may be useful as circulating biomarkers. Recent evidences suggest a role for these microvesicles in the three main aspects related to the pathogenesis of SSc (immunity, vascular damage, and fibrosis). Moreover, exosomes are of particular interest in the field of nano-delivery and are used as biological carriers. In this review, we report the latest information concerning SSc pathogenesis, clinical aspects of SSc, and current approaches to the treatment of SSc. Furthermore, we indicate a possible role of exosomes in SSc pathogenesis and suggest their potential use as diagnostic and prognostic biomarkers, as well as therapeutic tools.


Marine Drugs ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 342 ◽  
Author(s):  
Nadia Ruocco ◽  
Luisa Albarano ◽  
Roberta Esposito ◽  
Valerio Zupo ◽  
Maria Costantini ◽  
...  

The chemical ecology of marine diatoms has been the subject of several studies in the last decades, due to the discovery of oxylipins with multiple simultaneous functions including roles in chemical defence (antipredator, allelopathic and antibacterial compounds) and/or cell-to-cell signalling. Diatoms represent a fundamental compartment of marine ecosystems because they contribute to about 45% of global primary production even if they represent only 1% of the Earth’s photosynthetic biomass. The discovery that they produce several toxic metabolites deriving from the oxidation of polyunsaturated fatty acids, known as oxylipins, has changed our perspectives about secondary metabolites shaping plant–plant and plant–animal interactions in the oceans. More recently, their possible biotechnological potential has been evaluated, with promising results on their potential as anticancer compounds. Here, we focus on some recent findings in this field obtained in the last decade, investigating the role of diatom oxylipins in cell-to-cell communication and their negative impact on marine biota. Moreover, we also explore and discuss the possible biotechnological applications of diatom oxylipins.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 220 ◽  
Author(s):  
Ilaria Conti ◽  
Gabriele Varano ◽  
Carolina Simioni ◽  
Ilaria Laface ◽  
Daniela Milani ◽  
...  

microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level, inducing the degradation of the target mRNA or translational repression. MiRNAs are involved in the control of a multiplicity of biological processes, and their absence or altered expression has been associated with a variety of human diseases, including cancer. Recently, extracellular miRNAs (ECmiRNAs) have been described as mediators of intercellular communication in multiple contexts, including tumor microenvironment. Cancer cells cooperate with stromal cells and elements of the extracellular matrix (ECM) to establish a comfortable niche to grow, to evade the immune system, and to expand. Within the tumor microenvironment, cells release ECmiRNAs and other factors in order to influence and hijack the physiological processes of surrounding cells, fostering tumor progression. Here, we discuss the role of miRNAs in the pathogenesis of multicomplex diseases, such as Alzheimer’s disease, obesity, and cancer, focusing on the contribution of both intracellular miRNAs, and of released ECmiRNAs in the establishment and development of cancer niche. We also review growing evidence suggesting the use of miRNAs as novel targets or potential tools for therapeutic applications.


Author(s):  
Zhengyu Zhang ◽  
Aime Mugisha ◽  
Silvia Fransisca ◽  
Qinghuai Liu ◽  
Ping Xie ◽  
...  

Retinal diseases, the leading causes of vison loss and blindness, are associated with complicated pathogeneses such as angiogenesis, inflammation, immune regulation, fibrous proliferation, and neurodegeneration. The retina is a complex tissue, where the various resident cell types communicate between themselves and with cells from the blood and immune systems. Exosomes, which are bilayer membrane vesicles with diameters of 30–150 nm, carry a variety of proteins, lipids, and nucleic acids, and participate in cell-to-cell communication. Recently, the roles of exosomes in pathophysiological process and their therapeutic potential have been emerging. Here, we critically review the roles of exosomes as possible intracellular mediators and discuss the possibility of using exosomes as therapeutic agents in retinal diseases.


Author(s):  
Supriya D. Mahajan ◽  
Nigel Smith Ordain ◽  
Hilliard Kutscher ◽  
Shanta Karki ◽  
Jessica L. Reynolds

Fifty to sixty percent of HIV-1 positive patients experience HIV-1 associated neurocognitive disorders (HAND) likely due to persistent inflammation and blood–brain barrier (BBB) dysfunction. The role that microglia and astrocytes play in HAND pathogenesis has been well delineated; however, the role of exosomes in HIV neuroinflammation and neuropathogenesis is unclear. Exosomes are 50–150 nm phospholipid bilayer membrane vesicles that are responsible for cell-to-cell communication, cellular signal transduction, and cellular transport. Due to their diverse intracellular content, exosomes, are well poised to provide insight into HIV neuroinflammation as well as provide for diagnostic and predictive information that will greatly enhance the development of new therapeutic interventions for neuroinflammation. Exosomes are also uniquely positioned to be vehicles to delivery therapeutics across the BBB to modulate HIV neuroinflammation. This mini-review will briefly discuss what is known about exosome signaling in the context of HIV in the central nervous system (CNS), their potential for biomarkers as well as their potential for vehicles to deliver various therapeutics to treat HIV neuroinflammation.


Sign in / Sign up

Export Citation Format

Share Document