scholarly journals Transactivation of miR-202-5p by Steroidogenic Factor 1 (SF1) Induces Apoptosis in Goat Granulosa Cells by Targeting TGFβR2

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 445 ◽  
Author(s):  
Qiang Ding ◽  
Miaohan Jin ◽  
Yaoyue Wang ◽  
Jiao Liu ◽  
Peter Kalds ◽  
...  

MicroRNAs play key roles during ovary development, with emerging evidence suggesting that miR-202-5p is specifically expressed in female animal gonads. Granulosa cells (GCs) are somatic cells that are closely related to the development of female gametes in mammalian ovaries. However, the biological roles of miR-202-5p in GCs remain unknown. Here, we show that miR-202-5p is specifically expressed in GCs and accumulates in extracellular vesicles (EVs) from large growth follicles in goat ovaries. In vitro assays showed that miR-202-5p induced apoptosis and suppressed the proliferation of goat GCs. We further revealed that miR-202-5p is a functional miRNA that targets the transforming growth factor-beta type II receptor (TGFβR2). MiR-202-5p attenuated TGF-β/SMAD signaling through the degradation of TGFβR2 at both the mRNA and protein level, decreasing p-SMAD3 levels in GCs. Moreover, we verified that steroidogenic factor 1 (SF1) is a transcriptional factor that binds to the promoters of miR-202 and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) through luciferase reporter and chromatin immunoprecipitation (ChIP) assays. That contributed to positive correlation between miR-202-5p and CYP19A1 expression and estradiol (E2) release. Furthermore, SF1 repressed TGFβR2 and p-SMAD3 levels in GCs through the transactivation of miR-202-5p. Taken together, these results suggest a mechanism by which miR-202-5p regulates canonical TGF-β/SMAD signaling through targeting TGFβR2 in GCs. This provides insight into the transcriptional regulation of miR-202 and CYP19A1 during goat ovarian follicular development.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Sashwati Roy ◽  
Savita Khanna ◽  
Chandan K Sen

Background . Transforming growth factor beta-1 (TGFbeta-1) is a key cytokine implicated in the development of cardiac fibrosis following ischemia-reperfusion (IR) injury. The profibrotic effects of TGFbeta-1 are primarily attributable to the differentiation of cardiac fibroblasts (CF) to myofibroblasts. Previously, we have reported perceived hyperoxia (Circ Res 92:264 –71), sub-lethal reoxygenation shock during IR, induces differentiation of CF to myofibroblasts at the infarct site. The mechanisms underlying oxygen-sensitive induction of TGFbeta-1 mRNA remain to be characterized. Hypothesis . Fra2 mediates oxygen-induced TGFbeta-1 mRNA expression in adult cardiac fibroblasts. Methods. TGFbeta-1 mRNA expression in infarct tissue was investigated in an IR injury model. The left anterior descending coronary artery of mice was transiently occluded for 60 minutes followed by reperfusion to induce IR injury. Spatially resolved infarct and non-infarct tissues were collected at 0, 1, 3, 5, and 7 days post-IR using laser capture microdissection. TGFbeta-1 mRNA levels were measured using real-time PCR. To investigate the role of oxygen in the regulation of TGFbeta-1, we used our previously reported model of perceived hyperoxia where CF (from 5wks old mice) after isolation were cultured at 5%O 2 (physiological pO 2 ) followed by transferring them to 20%O 2 to induce hyperoxic insult. Results & Conclusions. In vivo, a significant increase (p<0.01; n=5) in TGFbeta-1 mRNA was observed at the infarct site already at day 1 post-IR. The levels continued to increase until day 7 post-IR. In vitro, exposure of CF to 20%O 2 hyperoxic insult induced TGFbeta-1 mRNA (p<0.001; n=4) and protein (p<0.01; n=4) expression. Using a TGFbeta-1 promoter-luciferase reporter and DNA binding assays, we collected first evidence that AP-1 and its component Fra2 as major mediators of oxygen-induced TGFbeta-1 expression. Exposure to 20%O 2 resulted in increased localization of Fra2 in nucleus. siRNA-dependent Fra-2 knock-down completely abrogated oxygen-induced TGFbeta1 expression. In conclusion, this study presents first evidence that Fra-2 is involved in inducible TGFbeta1 expression in CF. Fra2 was noted as being central in regulating oxygen-induced TGFbeta-1 expression.s


Endocrinology ◽  
2003 ◽  
Vol 144 (1) ◽  
pp. 154-162 ◽  
Author(s):  
Christopher R. Harlow ◽  
Mick Rae ◽  
Lindsay Davidson ◽  
Philip C. Trackman ◽  
Stephen G. Hillier

Abstract Lysyl oxidase (LOX) catalyzes the final enzymatic reaction required for cross-linking of collagen and elastin fibers and therefore has a crucial role in regulating the formation and maintenance of extracellular matrix in the ovary. LOX mRNA is abundantly expressed in rat granulosa cells. To examine how regulation of LOX in the ovary might influence follicular development, we studied LOX mRNA expression and enzyme activity in rat granulosa cells from late preantral/early antral follicles in vitro. FSH dose dependently inhibited LOX mRNA and enzyme activity (50% reduction at 10 ng/ml) in vitro, and FSH action was mimicked by 8-bromo-cAMP, suggesting FSH action via elevation of cAMP. Dihydrotestosterone alone enhanced LOX mRNA and enzyme activity, but potentiated the effect of FSH, causing a further reduction. TGFβ1 alone dose dependently enhanced LOX mRNA (5-fold increase at 10 ng/ml) and activity (1.5-fold increase). FSH dose dependently inhibited the increase in LOX mRNA and activity caused by TGFβ1 (by up to 84% and 80%, respectively). Growth differentiation factor-9 (GDF-9) and activin A, at the same concentration as TGFβ1 (10 ng/ml), stimulated LOX mRNA and activity within 6 h, although overall expression was higher at 48 h. All three factors when combined with FSH further reduced both mRNA and enzyme activity (by up to 60%) compared with FSH alone. These findings indicate control of LOX at endocrine, paracrine, and autocrine levels within the ovary and suggest coordinated regulation of ovarian extracellular matrix during follicular development, with FSH determining whether local factors act as stimulators or inhibitors of LOX.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qiankun Li ◽  
Wenjing Yue ◽  
Ming Li ◽  
Zhipeng Jiang ◽  
Zehui Hou ◽  
...  

Background: Colorectal cancer (CRC), the most commonly diagnosed cancer in the world, has a high mortality rate. In recent decades, long non-coding RNAs (lncRNAs) have been proven to exert an important effect on CRC growth. However, the CTBP1-AS2 expression and function in CRC are largely unknown.Materials and Methods: The CTBP1-AS2 and miR-93-5p expression in CRC and para-cancerous tissues was detected by reverse transcription-PCR. The expression of CTBP1-AS2, miR-93-5p and the transforming growth factor-beta (TGF-β)/small mothers against decapentaplegic 2/3 (SMAD2/3) pathway was selectively regulated to study the correlation between CTBP1-AS2 expression and prognosis of patients with CRC. CRC cell proliferation, apoptosis, and invasion were measured in vivo and in vitro. In addition, bioinformatics was applied to explore the targeting relationship between CTBP1-AS2 and miR-93-5p. The targeting binding sites between CTBP1-AS2 and miR-93-5p, as well as between miR-93-5p and TGF-β, were verified by the dual-luciferase reporter assay and the RNA immunoprecipitation experiment.Results: Compared with normal para-cancerous tissues, CTBP1-AS2 was considerably overexpressed in CRC tissues and was closely associated with worse survival of patients with CRC. Functionally, gain and loss in experiments illustrated that CTBP1-AS2 accelerated CRC cell proliferation and invasion and inhibited cell apoptosis. Mechanistically, CTBP1-AS2 regulated the malignant phenotype of tumor cells through the TGF-β/SMAD2/3 pathway. Moreover, miR-93-5p, as an endogenous competitive RNA of CTBP1-AS2, attenuated the oncogenic effects mediated by CTBP1-AS2.Conclusion: CTBP1-AS2 promotes the TGF-β/SMAD2/3 pathway activation by inhibiting miR-93-5p, thereby accelerating CRC development.


2018 ◽  
Vol 50 (5) ◽  
pp. 1754-1763 ◽  
Author(s):  
Liping Wang ◽  
Chunyan Wang ◽  
Xuqiang Jia ◽  
Jing Yu

Background/Aims: A reduced prevalence of circulating regulatory T cells (Tregs)is a hallmark of inflammatory rheumatoid arthritis (RA). However, the underlying mechanisms of alterations of Tregs are unclear. Methods: The ratio of Tregs in peripheral blood of healthy controls (HCs) and patients with RA was determined by flow cytometry. MicroRNA (miRNA) expression profiles in exosomes derived from RA patients (RA-exosomes) and in those from HCs (HC-exosomes) were detected by microarray analysis, and miR-17 was measured by quantitative real-time PCR. Transforming growth factor beta receptor II (TGFBR II) expressed by T cells was measured by flow cytometry. The interaction between miR-17 and TGFBR II was evaluated by dual-luciferase reporter assay. Results: We found that RA-exosomes can selectively affect Treg differentiation in vitro. Several miRNAs are more abundant in the RA-exosomes than in HC-exosomes. Among those upregulated in patients with RA, miR-17 can suppress Treg induction by inhibiting the expression of TGFBR II. Conclusion: Our findings imply that altered miRNA expression in RA-exosomes may contribute to the pathogenesis of RA by disrupting the homeostasis of Tregs.


Reproduction ◽  
2017 ◽  
Vol 154 (4) ◽  
pp. 521-534 ◽  
Author(s):  
Derek A Heath ◽  
Janet L Pitman ◽  
Kenneth P McNatty

Bone morphogenetic factor 15 (BMP15) and growth differentiation factor 9 (GDF9) are oocyte-secreted factors with demonstrable effects on ovarian follicular development and ovulation rate. However, the molecular forms of BMP15 and GDF9 produced by oocytes remain unclear. The aims herein, using Western blotting (WB) procedures with specific monoclonal antibodies (mabs), were to identify the molecular forms of BMP15 and GDF9 synthesised and secreted by isolated ovine (o) and bovine (b) oocytes in vitro. The mabs were known to recognise the biological forms of BMP15 or GDF9 since they had previously been shown to inhibit their bioactivities in vitro and in vivo. Using recombinant variants of oBMP15 and oGDF9, including a cysteine mutant form of oBMP15 (S356C) and a human (h) BMP15:GDF9 heterodimer (cumulin), it was established that the mabs were able to identify monomeric, dimeric, promature and higher-molecular-weight forms of BMP15 and GDF9 and cumulin (GDF9 mab only). After using non-reducing, reducing and reducing + cross-linking conditions, the major oocyte-secreted forms of o and b BMP15 and GDF9 were the cleaved and uncleaved monomeric forms of the promature proteins. There was no evidence for dimeric or heterodimeric forms of either mature BMP15 or GDF9. From in silico modelling studies using transforming growth factor beta (TGFB), activin or BMP crystal templates, and both present and previously published data, a model is proposed to illustrate how the monomeric forms of BMP15 and GDF9 may interact with their type II and type I cell-surface receptors to initiate the synergistic actions of these growth factors.


2002 ◽  
Vol 172 (1) ◽  
pp. 199-210 ◽  
Author(s):  
SA Pangas ◽  
TK Woodruff

Inhibin and activin are protein hormones with diverse physiological roles including the regulation of pituitary FSH secretion. Like other members of the transforming growth factor-beta gene family, they undergo processing from larger precursor molecules as well as assembly into functional dimers. Isolation of inhibin and activin from natural sources can only produce limited quantities of bioactive protein. To purify large-scale quantities of recombinant human inhibin and activin, we have utilized stably transfected cell lines in self-contained bioreactors to produce protein. These cells produce approximately 200 microg/ml per day total recombinant human inhibin. Conditioned cell media can be purified through column chromatography resulting in dimeric mature 32-34 kDa inhibin A and 28 kDa activin A. The purified recombinant proteins maintain their biological activity as measured by traditional in vitro assays including the regulation of FSH in rat anterior pituitary cultures and the regulation of promoter activity of the activin-responsive promoter p3TP-luc in tissue culture cells. These proteins will be valuable for future analysis of inhibin and activin function and have been distributed to the US National Hormone and Peptide Program.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 453
Author(s):  
Susana M. Chuva de Sousa Lopes ◽  
Marta S. Alexdottir ◽  
Gudrun Valdimarsdottir

Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 274-283
Author(s):  
Peng Yang ◽  
Jianhua Han ◽  
Shigeng Li ◽  
Shaoning Luo ◽  
Xusheng Tu ◽  
...  

Abstract Background Sepsis is a systemic inflammatory response that can lead to the dysfunction of many organs. The aberrant expression of miRNAs is associated with the pathogenesis of sepsis. However, the biological functions of miR-128-3p in sepsis remain largely unknown, and its mechanism should be further investigated. This study aimed to determine the regulatory network of miR-128-3p and TGFBR2 in lipopolysaccharide (LPS)-induced sepsis. Methods The expression levels of miR-128-3p and transforming growth factor beta receptors II (TGFBR2) were detected by quantitative polymerase chain reaction (qPCR). The protein levels of TGFBR2, Bcl-2, Bax, cleaved caspase 3, Smad2, and Smad3 were measured by western blot. Cell apoptosis was analyzed by flow cytometry. Cytokine production was detected by enzyme-linked immunosorbent assay (ELISA). The binding sites of miR-128-3p and TGFBR2 were predicted by Targetscan online software and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results The level of miR-128-3p was decreased, and TGFBR2 expression was increased in serum samples of sepsis patients and LPS-induced HK2 cells. Overexpression of miR-128-3p or knockdown of TGFBR2 ameliorated LPS-induced inflammation and apoptosis. Moreover, TGFBR2 was a direct target of miR-128-3p, and its overexpression reversed the inhibitory effects of miR-128-3p overexpression on inflammation and apoptosis in LPS-induced HK2 cells. Besides, overexpression of miR-128-3p downregulated TGFBR2 to suppress the activation of the Smad signaling pathway. Conclusion miR-128-3p could inhibit apoptosis and inflammation by targeting TGFBR2 in LPS-induced HK2 cells, which might provide therapeutic strategy for the treatment of sepsis.


Sign in / Sign up

Export Citation Format

Share Document