scholarly journals Cytokines Differently Define the Immunomodulation of Mesenchymal Stem Cells from the Periodontal Ligament

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1222 ◽  
Author(s):  
Christian Behm ◽  
Alice Blufstein ◽  
Johannes Gahn ◽  
Michael Nemec ◽  
Andreas Moritz ◽  
...  

Human periodontal ligament stem cells (hPDLSCs) play an important role in periodontal tissue homeostasis and regeneration. The function of these cells in vivo depends largely on their immunomodulatory ability, which is reciprocally regulated by immune cells via cytokines, particularly interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. Different cytokines activate distinct signaling pathways and might differently affect immunomodulatory activities of hPDLSCs. This study directly compared the effect of IFN-γ, TNF-α, or IL-1β treated primary hPDLSCs on allogenic CD4+ T lymphocyte proliferation and apoptosis in an indirect co-culture model. The effects of IFN-γ, TNF-α, and IL-1β on the expression of specific immunomodulatory factors such as intoleamine-2,3-dioxygenase-1 (IDO-1), prostaglandin E2 (PGE2), and programmed cell death 1 ligand 1 (PD-L1) and ligand 2 (PD-L2) in hPDLSCs were compared. The contribution of different immunomodulatory mediators to the immunomodulatory effects of hPDLSCs in the indirect co-culture experiments was assessed using specific inhibitors. Proliferation of CD4+ T lymphocytes was inhibited by hPDLSCs, and this effect was strongly enhanced by IFN-γ and IL-1β but not by TNF-α. Apoptosis of CD4+ T lymphocytes was decreased by hPDLSCs per se. This effect was counteracted by IFN-γ or IL-1β. Additionally, IFN-γ, TNF-α, and IL-1β differently regulated all investigated immunomediators in hPDLSCs. Pharmacological inhibition of immunomediators showed that their contribution in regulating CD4+ T lymphocytes depends on the cytokine milieu. Our data indicate that inflammatory cytokines activate specific immunomodulatory mechanisms in hPDLSCs and the expression of particular immunomodulatory factors, which underlies a complex reciprocal interaction between hPDLSCs and CD4+ T lymphocytes.

2021 ◽  
Vol 11 (6) ◽  
pp. 528
Author(s):  
Spoorthi Ravi Banavar ◽  
Swati Yeshwant Rawal ◽  
Shaju Jacob Pulikkotil ◽  
Umer Daood ◽  
Ian C. Paterson ◽  
...  

Background: The effects of lipopolysaccharide (LPS) on cell proliferation and osteogenic potential (OP) of MSCs have been frequently studied. Objective: to compare the effects of LPS on periodontal-ligament-derived mesenchymal stem cells (PDLSCs) in monolayer and 3D culture. Methods: The PDLSCs were colorimetrically assessed for proliferation and osteogenic potential (OP) after LPS treatment. The 3D cells were manually prepared by scratching and allowing them to clump up. The clumps (C-MSCs) were treated with LPS and assessed for Adenosine triphosphate (ATP) and OP. Raman spectroscopy was used to analyze calcium salts, DNA, and proline/hydroxyproline. Multiplexed ELISA was performed to assess LPS induced local inflammation. Results: The proliferation of PDLSCs decreased with LPS. On Day 28, LPS-treated cells showed a reduction in their OP. C-MSCs with LPS did not show a decrease in ATP production. Principal bands identified in Raman analysis were the P–O bond at 960 cm−1 of the mineral component, 785 cm−1, and 855 cm−1 showing qualitative changes in OP, proliferation, and proline/hydroxyproline content, respectively. ELISA confirmed increased levels of IL-6 and IL-8 but with the absence of TNF-α and IL-1β secretion. Conclusions: These observations demonstrate that C-MSCs are more resistant to the effects of LPS than cells in monolayer cell culture. Though LPS stimulation of C-MSCs creates an early pro-inflammatory milieu by secreting IL-6 and IL-8, PDLSCs possess inactivated TNF promoter and an ineffective caspase-1 activating process.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lihua Yin ◽  
Wenxiao Cheng ◽  
Zishun Qin ◽  
Hongdou Yu ◽  
Zhanhai Yu ◽  
...  

This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 μM naringin performs the best effect and a collection of bone-related genes (RUNX2,COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 μM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo.


2021 ◽  
Author(s):  
Feng Zhou ◽  
Jia Guo ◽  
Fang Wang ◽  
Wanmin Zhao ◽  
Xiaoning He ◽  
...  

Abstract Background: Periodontal ligament stem cells (PDLSCs) aggregate is still limited in clinical application for lack of angiogenesis. This study aimed to investigate the effects and underlying mechanism of exosomes derived from stem cells from human exfoliated deciduous teeth (SHED) aggregate (SA-Exo) on the aggregate formation and angiogenic properties of PDLSCs.Methods: SA-Exo were isolated by ultracentrifugation. The effect of SA-Exo on the aggregate formation and angiogenic differentiation of PDLSCs were evaluated by investigating extracellular matrix (ECM) deposition and tube formation assay. MicroRNA (miRNA) sequencing was employed to screen different miRNA expression. The effect of targeting miRNA on ECM deposition and angiogenesis of PDLSCs aggregate was investigated after overexpression and inhibition of miRNA. Periodontal bone defect rat models were established to evaluate the effect of the PDLSCs aggregate and SA-Exo combination on periodontal bone regeneration. Results: SA-Exo could significantly enhance the ECM deposition and angiogenic ability of PDLSCs. The expression of ECM-associated proteins (COL-I, integrinβ1, and fibronectin), angiogenesis-related proteins (PDGF, ANG, TGFβRII), and related pathway (p-SMAD1/5 and p-SMAD2/3) were upregulated in PDLSCs aggregate with SA-Exo. Mechanistically, miR-222 was found relatively abundant in SA-Exo, which promoted ECM deposition and angiogenesis of PDLSCs. In vivo experiment further validated that combinational use of PDLSCs aggregate and SA-Exo promote more bone formation and neovascularization in rat’s periodontal bone defect.Conclusions: SA-Exo-shuttled miR-222 contributes to PDLSCs aggregate engineering by promoting aggregate formation and angiogenesis, which might through activate the TGF-β/SMAD signaling pathway.


2017 ◽  
Vol 61 (2) ◽  
Author(s):  
Francesca Diomede ◽  
Maria Zingariello ◽  
Marcos F.X.B. Cavalcanti ◽  
Ilaria Merciaro ◽  
Natalia De Isla ◽  
...  

<p>The present study was aimed at investigating whether human Periodontal Ligament Stem Cells (hPDLSCs) were capable of sensing and reacting to lipopolysaccharide from <em>Porphyromonas</em> <em>gingivalis</em> (LPS-G) which is widely recognized as a major pathogen in the development and progression of periodontitis. At this purpose hPDLCs were stimulated with 5 μg/mL LPS-G various times and the expression of toll-like receptor 4 (TLR4) was evaluated. Toll-like receptors (TLRs) play an essential role in innate immune signaling in response to microbial infections, and in particular TLR4, type-I transmembrane proteins, has been shown recognizing LPS-G. Our results put in evidence, in treated samples, an overexpression of TLR4 indicating that, hPDLSCs express a functional TLR4 receptor. In addition, LPS-G challenge induces a significant cell growth decrease starting from 24 h until 72 h of treatment. LPS-G leads the activation of the TLR4/MyD88 complex, triggering the secretion of proinflammatory cytokines cascade as: IL-1α, IL-8, TNF-α and β and EOTAXIN. Moreover, the upregulation of pERK/ERK signaling pathways and NFkB nuclear translocation was evident. On the basis of these observations, we conclude that hPDLSCs could represent an appropriate stem cells niche modeling leading to understand and evaluate the biological mechanisms of periodontal stem cells in response to LPS-G, mimicking <em>in vitro </em>an inflammatory process occurring <em>in viv</em>o in periodontal disease.</p>


2019 ◽  
Vol 8 (12) ◽  
pp. 2211 ◽  
Author(s):  
Christian Behm ◽  
Alice Blufstein ◽  
Johannes Gahn ◽  
Barbara Kubin ◽  
Michael Nemec ◽  
...  

Periodontal ligament-derived mesenchymal stem cells (hPDLSCs) possess immunomodulatory abilities which are strongly enhanced by various inflammatory cytokines. Vitamin D3 has anti-inflammatory effects on hPDLSCs and immune cells. However, no study to date has directly compared the influence of 1,25(OH)2D3 on the immunomodulatory activities of hPDLSCs in the presence of different cytokines. In the present study, the effects of hPDLSCs treated with tumor necrosis factor (TNF)-α, interleukin (IL)-1β, or interferon (IFN)-γ in the presence of 1,25(OH)2D3 on the proliferation of allogenic CD4+ T lymphocyte or on the functional status of primary CD68+ macrophages were analyzed in coculture models. Additionally, the effects of 1,25(OH)2D3 on TNF-α-, IL-1β-, and IFN-γ-induced gene expression of some immunomodulatory factors in hPDLSCs were compared. Under coculture conditions, 1,25(OH)2D3 increased or decreased CD4+ T lymphocyte proliferation via hPDLSCs, depending on the cytokine. hPDLSCs primed with 1,25(OH)2D3 and different cytokines affected pro- and anti-inflammatory cytokine expression in macrophages variably, depending on the priming cytokine. With one exception, 1,25(OH)2D3 significantly reduced TNF-α-, IL-1β-, and IFN-γ-induced expression of all the investigated immunomediators in hPDLSCs, albeit to different extents. These results suggest that 1,25(OH)2D3 influences the immunomodulatory activities of hPDLSCs depending qualitatively and quantitatively on the presence of certain inflammatory cytokines.


2020 ◽  
Vol 48 (7) ◽  
pp. 030006052093085
Author(s):  
Xiaoyu Li ◽  
Bowen Zhang ◽  
Hong Wang ◽  
Xiaolu Zhao ◽  
Zijie Zhang ◽  
...  

Objectives The effect of age on the response of peripheral blood mononuclear cells (PBMCs) to immunosuppression induced by human periodontal ligament stem cells (hPDLSCs) is unclear. The identity of the cytokines most effective in inducing the PBMC immune response remains unknown. This study investigated the effects of age on immunophenotype, proliferation, activation, and cytokine secretion capacities of PBMCs following co-culture with hPDLSCs. Methods PBMCs were collected from younger (16–19 years) and older (45–55 years) donors, then co-cultured with confirmed hPDLSCs for various lengths of time. T lymphocyte proliferation and cell surface marker expression were analyzed by flow cytometry. Cytokine expression levels were measured by quantitative polymerase chain reaction assays and enzyme-linked immunosorbent assays. Results CD28 expression by T lymphocytes decreased with age, indicating reduced proliferation; CD95 expression increased with age, indicating enhanced apoptosis. Moreover, hPDLSCs inhibited T lymphocyte proliferation in both age groups; this inhibition was stronger in cells from older donors than in cells from younger donors. Age reduced the secretion of interleukin-2 and interferon-γ, whereas it increased the secretion of tumor necrosis factor-β by PBMCs cultured with hPDLSCs. Conclusions Aging may have a robust effect on the response of PBMCs towards hPDLSC-induced immunosuppression.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5891-5891
Author(s):  
Jacob Halum Basham ◽  
Terrence L. Geiger

Abstract Chimeric antigen receptor-modified T lymphocytes (CART cells) have shown benefit as an adjuvant immunotherapy in the treatment of B cell malignancies. This success of re-targeted T cells has not been extended to other hematologic malignancies. We have developed an immunotherapeutic approach to treat acute myeloid leukemia (AML) using CAR T cells re-directed against the myeloid-specific antigen CD33 (CART-33). CART-33 cells are potent and specific in eliminating AML cells in vitro and in vivo. Despite this, CART-33 cells have shown poor in vivo expansion and persistence in NOD-SCID IL2rγ (-/-) (NSG) AML xenograft models. To address the reason for this, we assessed the impact of AML-expressed programmed death ligands 1 & 2 (PD-L1/2) on CART-33 cell activity. PD-L1 inhibits T cell functions upon binding PD-1, which is upregulated with T cell activation. Less is known about PD-L2's effect. Interferon-gamma (IFN-γ), a primary effector cytokine secreted by CD4+ and CD8+ effector T cells, is a known potent inducer of PD-L1 on AML blasts. Using AML cell lines U937, Oci-AML3, CMK, and MV4-11 we show that IFN-γ, TNF-α, and activated CART-33 supernatant can induce up-regulation of PD-L1 and PD-L2 on AML. IFN-γ and TNF-α synergize strongly in up-regulating PD-1 ligands on AML. The kinetics and induction of PD-L2 are distinct from that of PD-L1. Although PD-L1 is well documented to suppress T cell function via ligation of T cell expressed PD-1, induction of PD-L1/L2 had no effect on the cytolytic activity of CART-33 cells against AML in short term (<48 h) cultures. Paradoxically, 24 hr pre-treatment of AML with either IFN-γ or CART-33 supernatant increased AML susceptibility to killing by CART-33 cells despite elevated expression of PD-L1/L2 by AML. Our results highlight the regulatory complexity of AML cytolysis by re-targeted T lymphocytes, and argue that tumor-expressed PD-L1 and PD-L2 impacts the sustainability, but not short-term killing activity, of adoptively transferred CAR T cells in the treatment of AML. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document