scholarly journals Lung Tumor Cell-Derived Exosomes Promote M2 Macrophage Polarization

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1303 ◽  
Author(s):  
Alexandra Pritchard ◽  
Sultan Tousif ◽  
Yong Wang ◽  
Kenneth Hough ◽  
Saad Khan ◽  
...  

Cellular cross-talk within the tumor microenvironment (TME) by exosomes is known to promote tumor progression. Tumor promoting macrophages with an M2 phenotype are suppressors of anti-tumor immunity. However, the impact of tumor-derived exosomes in modulating macrophage polarization in the lung TME is largely unknown. Herein, we investigated if lung tumor-derived exosomes alter transcriptional and bioenergetic signatures of M0 macrophages and polarize them to an M2 phenotype. The concentration of exosomes produced by p53 null H358 lung tumor cells was significantly reduced compared to A549 (p53 wild-type) lung tumor cells, consistent with p53-mediated regulation of exosome production. In co-culture studies, M0 macrophages internalized tumor-derived exosomes, and differentiated into M2 phenotype. Importantly, we demonstrate that tumor-derived exosomes enhance the oxygen consumption rate of macrophages, altering their bioenergetic state consistent with that of M2 macrophages. In vitro co-cultures of M0 macrophages with H358 exosomes demonstrated that exosome-induced M2 polarization may be p53 independent. Murine bone marrow cells and bone marrow-derived myeloid-derived suppressor cells (MDSCs) co-cultured with lewis lung carcinoma (LLC)-derived exosomes differentiated to M2 macrophages. Collectively, these studies provide evidence for a novel role for lung tumor-exosomes in M2 macrophage polarization, which then offers new therapeutic targets for immunotherapy of lung cancer.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wenbo Zhao ◽  
Junxian Hu ◽  
Qingyi He

Abstract Background When multicystic vesicles (precursors of exosomes) are formed in cells, there are two results. One is decomposition by lysosomes, and the other is the generation of exosomes that are transported out through the transmembrane. On the other hand, M2 macrophages promote the formation of local vascularization and provide necessary support for the repair of bone defects. To provide a new idea for the treatment of bone defects, the purpose of our study was to investigate the effect of WKYMVm (Trp-Lys-Tyr-Met-Val-D-Met-NH2) peptide on the secretion of exosomes from murine bone marrow-derived MSCs (mBMSCs) and the effect of exosomes on the polarization of M2 macrophages. Methods The WKYMVm peptide was used to activate the formyl peptide receptor 2 (FPR2) pathway in mBMSCs. First, we used Cell Counting Kit-8 (CCK-8) to detect the cytotoxic effect of WKYMVm peptide on mBMSCs. Second, we used western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) to detect the expression of interferon stimulated gene 15 (ISG15) and transcription factor EB (TFEB) in mBMSCs. Then, we detected lysosomal activity using a lysozyme activity assay kit. Third, we used an exosome extraction kit and western blotting to detect the content of exosomes secreted by mBMSCs. Fourth, we used immunofluorescence and western blotting to count the number of polarized M2 macrophages. Finally, we used an inhibitor to block miRNA-146 in exosomes secreted by mBMSCs and counted the number of polarized M2 macrophages. Results We first found that the WKYMVm peptide had no toxic effect on mBMSCs at a concentration of 1 μmol/L. Second, we found that when the FPR2 pathway was activated by the WKYMVm peptide in mBMSCs, ISG15 and TFEB expression was decreased, leading to increased secretion of exosomes. We also found that lysosomal activity was decreased when the FPR2 pathway was activated by the WKYMVm peptide in mBMSCs. Third, we demonstrated that exosomes secreted by mBMSCs promote the polarization of M2 macrophages. Moreover, all these effects can be blocked by the WRWWWW (WRW4, H-Trp-Arg-Trp-Trp-Trp-Trp-OH) peptide, an inhibitor of the FPR2 pathway. Finally, we confirmed the effect of miRNA-146 in exosomes secreted by mBMSCs on promoting the polarization of M2 macrophages. Conclusion Our findings demonstrated the potential value of the WKYMVm peptide in promoting the secretion of exosomes by mBMSCs and eventually leading to M2 macrophage polarization. We believe that our study could provide a research basis for the clinical treatment of bone defects.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yong You ◽  
Xiaoqing Zhang ◽  
Xiao Wang ◽  
Dan Yue ◽  
Fanxiang Meng ◽  
...  

This study was to identify functions of ILC2, a newly found innate lymphoid cell which mainly locates in mucosa organs like lungs and intestines, in IBD. We injected rIL-33 protein to C57/BL6 mouse to explore how IL-33 induces ILC2 proliferation. The results showed that ILC2 reached a proliferation peak at day 5 and expressed multiple surface markers like CD127, C-kit, CD69, CD44, ST2, CD27, DR3, MHCII, and CD90.2. ILC2 also expressed high quantity of IL-13 and IL-5 and few IL-17A which indicates a potentially immunological function in IBD development. Afterwards, we transferred sort purified ILC2 to Rag1-/- mouse given DSS to induce acute colitis in order to explore the innate function of ILC2. Data showed that ILC2 alleviates DSS-induced acute innate colitis by repairing epithelial barrier and restore body weight. Furthermore, we found that ILC2 can cause macrophages polarizing to M2 macrophages in the gut. Therefore, we concluded that ILC2 played a therapeutic role in mouse acute colitis.


2020 ◽  
pp. 153537022097232
Author(s):  
Lisha Li ◽  
Xuemin Qiu ◽  
Na Zhang ◽  
Yan Sun ◽  
Yan Wang ◽  
...  

A loss-of-function mutation in the Lrp5 gene in mice leads to a low bone mass disorder due to the inhibition of the canonical Wnt signaling pathway; however, the role of bone marrow microenvironment in mice with this mutation remains unclear. In this study, we evaluated proliferation and osteogenic potential of mouse osteoblasts using the MTT assay and Alizarin red staining. The levels of alkaline phosphatase, tartrate-resistant acid phosphatase, and adiponectin in culture supernatants were measured using the enzyme-linked immunosorbent assay. Osteoclast bone resorbing activity was evaluated by toluidine staining and the number and area of bone resorption pits were determined. We observed increased osteogenesis in osteoblasts co-cultured with the BM-derived myeloid cells compared to the osteoblasts cultured alone. Mice with global Lrp5 deletion had a relatively higher bone density compared to the mice carrying osteoblast/osteocyte-specific Lrp5 deletion. An increased frequency of M2 macrophages and reduced expression of inflammatory cytokines were detected in the myeloid cells derived from the bone marrow of mice with global Lrp5 deletion. Higher adipogenic potential and elevated levels of adiponectin in the global Lrp5 deletion mice contributed to the preferential M2 macrophage polarization. Here, we identified a novel systemic regulatory mechanism of bone formation and degradation in mice with global Lrp5 deletion. This mechanism depends on a crosstalk between the adipocytes and M2 macrophages in the bone marrow and is responsible for partly rescuing osteopenia developed as a result of decreased Wnt signaling.


2016 ◽  
Vol 36 (4) ◽  
Author(s):  
Yan Zhong ◽  
Chun Yi

Macrophages are highly plastic cells with the ability to differentiate into both M1- and M2-polarized phenotypes. As a distinct M2-polarized population, tumour-associated macrophages (TAMs) promote tumorigenesis owing to their pro-angiogenic and immune-suppressive functions in tumour microenvironment. In the present study, we found that the microRNA-720 (miR-720) was down-regulated in TAMs isolated from breast carcinomas and M2-polarization macrophages. Overexpression of miR-720 attenuated M2 phenotype expression and thus inhibited M2 polarization. We further identified GATA binding protein 3 (GATA3), a transcriptional factor that plays an important role in M2 macrophage polarization, was the downstream target of miR-720. Ectopic expression of GATA3 restored the M2 phenotype in miR-720 overexpressed macrophages. Importantly, overexpression of miR-720 inhibited pro-migration behaviour and phagocytic ability of M2-polarized macrophages. Thus, our data suggest that miR-720 plays an important role in regulating M2 macrophage polarization and function.


2021 ◽  
Author(s):  
Wu Zhou ◽  
Ze Lin ◽  
Yuan Xiong ◽  
Hang Xue ◽  
Wen Song ◽  
...  

Abstract Background: Macrophages are essential for fracture healing, acting mainly through remodeling of the extracellular matrix and promotion of angiogenesis. The role of macrophages in regulating osteogenic differentiation, particularly that of the M2 phenotype, is increasingly researched. Baicalein (BCL) had also been shown to have pro-fracture-healing effects.Results: In this study, we developed mesoporous silica and Fe3O4 composite-targeted nanoparticles loaded with BCL (BCL@MMSNPs-SS-CD-NW), that could be magnetically delivered to the fracture site. These induced macrophage recruitment in a targeted manner, polarizing them towards the M2 phenotype, and thereby inducing MSCs towards osteoblastic differentiation. The mesoporous silicon nanoparticles (MSNs) were prepared with surface sulfhydrylation and amination modification, and the mesoporous channels were blocked with β-cyclodextrin. The outer layer of the mesoporous silicon was added with an amantane-modified NW targeting peptide to obtain the targeted nano-system. After entering macrophages, BCL could be released from nanoparticles since the disulfide linker could be cleaved by intracellular glutathione (GSH) resulting in the removing of CD gatekeeper, which is a key element in the pro-bone-remodeling functions, such as anti-inflammation and induction of M2 macrophage polarization to facilitate osteogenic differentiation.Conclusions: This nano-system passively accumulated in the fracture site, promoting osteogenic differentiation activities, highlighting a potent therapeutic benefit with high biosafety.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yohei Kawai ◽  
Yuji Narita ◽  
Aika Yamawaki-Ogata ◽  
Akihiko Usui ◽  
Kimihiro Komori

Background. The pathogenesis of abdominal aortic aneurysm (AAA) is characterized by atherosclerosis with chronic inflammation in the aortic wall. Montelukast is a selective cys-LT 1 receptor antagonist that can suppress atherosclerotic diseases. We evaluated the in vitro properties of montelukast and its in vivo activities in an angiotensin II–infused apolipoprotein E–deficient (apoE−/−) AAA mouse model. Methods. The mouse monocyte/macrophage cell line J774A.1 was used in vitro. M1 macrophages were treated with montelukast, and gene expressions of inflammatory cytokines were measured. Macrophages were cultured with montelukast, then gene expressions of arginase-1 and IL (interleukin)-10 were assessed by quantitative polymerase chain reaction, arginase-1 was measured by fluorescence-activated cell sorting, and IL-10 concentration was analyzed by enzyme-linked immunosorbent assay. In vivo, one group (Mont, n=7) received oral montelukast (10 mg/kg/day) for 28 days, and the other group (Saline, n=7) was given normal Saline as a control for the same period. Aortic diameters, activities of matrix metalloproteinases (MMPs), cytokine concentrations, and the number of M2 macrophages were analyzed. Results. Relative to control, montelukast significantly suppressed gene expressions of MMP-2, MMP-9, and IL-1β, induced gene expressions of arginase-1 and IL-10, enhanced the expression of the arginase-1 cell surface protein, and increased the protein concentration of IL-10. In vivo, montelukast significantly decreased aortic expansion (Saline vs Mont; 2.44 ± 0.15 mm vs 1.59 ± 0.20 mm, P<.01), reduced MMP-2 activity (Saline vs Mont; 1240 μM vs 755 μM, P<.05), and induced infiltration of M2 macrophages (Saline vs Mont; 7.51 % vs 14.7 %, P<.05). Conclusion. Montelukast induces M2 macrophage polarization and prevents AAA formation in apoE−/− mice.


2020 ◽  
Author(s):  
Xiaohui Xie ◽  
Juan He ◽  
Yaqiong Liu ◽  
Weiwei Chen ◽  
Kun Shi

Abstract Background: In our previous study, we found Formyl peptide receptor 2 (FPR2) promoted the invasion and metastasis of EOC and it could be a prognostic marker for EOC. In this study, we aimed to study the possible mechanism of FPR2 in promoting EOC progression.Methods: The FPR2 ectopic expression and knockdown EOC cell lines as well as their control cell lines were established and the expression change of RhoA in each cell lines was evaluated by RT-qPCR and Western-blot. Wound healing and Transwell assays were performed to detect the migrational ability of EOCs that affected by FPR2 and RhoA. The supernatant of each EOC cell lines were used to co-culture with the macrophages, and tested the M1 and M2 macrophges biomarkers by flow cytometry. THP-1 cell line was also indcued to differentiated to M1 and M2 macrophages, FPR2 and RhoA expression in each macrophage cell lines were detected by RT-qPCR and Western-blot. Results: RhoA expression was significantly increased in EOCs along with the overexpression of FPR2, which showed a positive correlation by Pearson correlation analysis. FPR2 ectopic expression would contribute to the migrational ability of EOCs, and RhoA inhibitor (C3 transferase) would impare EOCs migration. Furthermore, FPR2 stimulated the secretion of Th2 cytokines by EOCs, which induced macrophages differentiate to M2 phenotype, while RhoA inhibitor stimulate the secretion of Th1 cytokines and induce macrophages differentiate to M1 phenotype. Moreover, compared with M1 macrophages and THP-1 cells, FPR2 and RhoA expression were significantly up-regulated in M2 macrophages.Conclusion: FPR2 stimulated M2 macrophage polarization and promote invasion and metastasis of ovarian cancer cells through RhoA.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3749-3749
Author(s):  
Cigall Kadoch ◽  
Valerie D. Wong ◽  
Tara Rambaldo ◽  
William Hyun ◽  
Clifford Lowell ◽  
...  

Abstract Abstract 3749 Poster Board III-685 Macrophages are a critical component of anti-tumor immunity but may be subverted from the classically-activated, or M1 phenotype, which mediates tumor elimination, to an alternatively-activated, M2 phenotype, which promotes tumor progression. Interleukin-4 (IL-4) signaling is a pivotal regulator of macrophage polarization to the M2 phenotype. The efficacy of rituximab appears to be mediated predominantly by antibody-dependent cellular cytotoxicity (ADCC) with tumor-associated macrophages being the dominant effector cell. We hypothesize that the phenotype of tumor-associated macrophages (M1 vs. M2) may be a potential determinant of rituximab efficacy or resistance. Relevant to this hypothesis is our demonstration of the intratumoral expression of IL-4 by CNS lymphoma (Blood, 2006; Clin Cancer Res., 2009) as well as our observation that the M2 polarization of macrophages by IL-4 treatment in vitro (18 h) results in an 8-fold decrease in rituximab-mediated ADCC of Raji lymphoma cells compared to ADCC-mediated by naïve or M1 polarized macrophages (p<0.001). There is an extreme paucity of molecular information regarding the role and phenotype of tumor macrophages in non-Hodgkin lymphoma in general, including CNS lymphoma. While macrophages from the cerebrospinal fluid (CSF) are routinely quantified in cytospin analyses, to date there is no established information regarding the phenotype and state of differentiation of macrophages within the leptomeningeal compartment. We have developed a novel flow-cytometry-based protocol for the isolation and phenotypic characterization of macrophages from the CSF of patients with CNS lymphoma. We have used candidate markers of M2 differentiation based upon our gene expression studies of CD14+ activated CSF macrophages, including CD206 and Factor XIII (each of which have previously been shown to be induced in macrophages upon IL-4 stimulation). We have identified M1 differentiation of CSF CD14+ macrophages by high fluorescence when incubated with DAF-FM diacetate, a cell-permeable marker of nitric oxide synthase (iNOS). Using flow-cytometry to evaluate the relative expression of DAF-FM and CD206, we demonstrate the presence of at least four subpopulations of activated macrophages in the CSF of CNS lymphoma patients. M1 macrophages, which highly express iNOS are denoted as DAF-FM(+)/CD206(-). M2 macrophages, which weakly express iNOS but which highly express CD206 are denoted as DAF-FM (-)/CD206(+). In addition, we have detected a mixed phenotype with features of both M1 and M2 macrophages, DAF-FM(+)/CD206(+), which we have termed dual-activated. A fourth subpopulation of activated macrophages within the CSF do not express iNOS or CD206. Thus far, CSF macrophage subpopulations have been characterized and sorted from thirty-five subjects: 18 patients with CNS lymphoma and 17 control subjects with non-neoplastic conditions. We demonstrate for the first time the association of M2 macrophages within the CSF with the pathogenesis of CNS lymphoma: there was a greater than six-fold increase in the proportion of macrophages with M2 features in immunocompetent subjects with CNS lymphoma compared to controls (p<0.001). By contrast, the proportion of macrophages with M1 features was similar between lymphoma and controls. In addition, we reproducibly detected an increase in the ratio of M1:M2 macrophages which correlated with therapeutic response to intrathecal methotrexate or cytarabine (within 94 h) in CNS lymphoma patients. By contrast, the intraventricular administration of rituximab was reproducibly associated with a greater than three-fold increase in the relative ratio of M2:M1 macrophages which was sustained compared to macrophages analyzed pre-intrathecal rituximab (p<0.001). In each of four cases, increases in M2 macrophage polarization anticipated the onset of intrathecal rituximab resistance and tumor progression. We believe this to be the first application of flow-cytometry to define the polarization states of intratumoral macrophages in non-Hodgkin lymphoma as well as the first description of dynamic changes in macrophage phenotypes during the evolution of resistance to rituximab therapy. The elucidation of distinct macrophage subpopulations based upon the expression of candidate markers of M1 vs. M2 phenotype may provide insight into tumor pathogenesis and prognosis. Disclosures: Off Label Use: While we describe the use of intrathecal administration of rituximab in patients with recurrent CNS and intraocular lymphomaa, the focus of our study is on the relationship between M2 macrophage polarization and the pathogenesis of CNS lymphoma as well as the potential relationship of macrophage polarization to acquired resistance to rituximab in CNS lymphoma patients.


2021 ◽  
Author(s):  
Xinyun Han ◽  
Junxian Hu ◽  
Wenbo Zhao ◽  
Hongwei Lu ◽  
Jingjin Dai ◽  
...  

Abstract Angiogenesis is essential for successful bone defect repair. In normal tissue repair, the physiological inflammatory response is the main regulator of angiogenesis through the activity of macrophages and the cytokines secreted by them. In particular, M2 macrophages which secrete high levels of PDGF-BB are typically considered to promote angiogenesis. A hexapeptide [WKYMVm, (Trp-Lys-Tyr-Met-Val-D-Met-NH2)] has been reported to modulate inflammatory activities. However, the underlying mechanisms by which WKYMVm regulates macrophages remain unclear. In this study, the possible involvement by which WKYMVm induces the polarization of macrophages and affects their behaviors was evaluated. In vitro results showed that macrophages were induced to an M2 rather than M1 phenotype and the M2 phenotype was enhanced by WKYMVm through activation of the JAK1/STAT6 signaling pathway. It was also found that WKYMVm played an important role in the PDGF-BB production increase and proangiogenic abilities in M2 macrophages. Consistent with the results in vitro, the elevated M2/M0 ratio induced by WKYMVm enhanced the formation of new blood vessels in a femoral defect mouse model. In summary, these findings suggest that WKYMVm could be a promising alternative strategy for angiogenesis in bone repair by inducing M2 macrophage polarization.


Sign in / Sign up

Export Citation Format

Share Document