scholarly journals Soluble St2 Induces Cardiac Fibroblast Activation and Collagen Synthesis via Neuropilin-1

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1667 ◽  
Author(s):  
Lara Matilla ◽  
Vanessa Arrieta ◽  
Eva Jover ◽  
Amaia Garcia-Peña ◽  
Ernesto Martinez-Martinez ◽  
...  

Circulating levels of soluble interleukin 1 receptor-like 1 (sST2) are increased in heart failure and associated with poor outcome, likely because of the activation of inflammation and fibrosis. We investigated the pathogenic role of sST2 as an inductor of cardiac fibroblasts activation and collagen synthesis. The effects of sST2 on human cardiac fibroblasts was assessed using proteomics and immunodetection approaches to evidence the upregulation of neuropilin-1 (NRP-1), a regulator of the profibrotic transforming growth factor (TGF)-β1. In parallel, sST2 increased fibroblast activation, collagen and fibrosis mediators. Pharmacological inhibition of nuclear factor-kappa B (NF-κB) restored NRP-1 levels and blocked profibrotic effects induced by sST2. In NRP-1 knockdown cells, sST2 failed to induce fibroblast activation and collagen synthesis. Exogenous NRP-1 enhanced cardiac fibroblast activation and collagen synthesis via NF-κB. In a pressure overload rat model, sST2 was elevated in association with cardiac fibrosis and was positively correlated with NRP-1 expression. Our study shows that sST2 induces human cardiac fibroblasts activation, as well as the synthesis of collagen and profibrotic molecules. These effects are mediated by NRP-1. The blockade of NF-κB restored NRP-1 expression, improving the profibrotic status induced by sST2. These results show a new pathogenic role for sST2 and its mediator, NRP-1, as cardiac fibroblast activators contributing to cardiac fibrosis.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Po-Yuan Chen ◽  
Neng-Lang Shih ◽  
Wen-Rui Hao ◽  
Chun-Chao Chen ◽  
Ju-Chi Liu ◽  
...  

Diabetes-associated cardiac fibrosis is a severe cardiovascular complication. Momordicine I, a bioactive triterpenoid isolated from bitter melon, has been demonstrated to have antidiabetic properties. This study investigated the effects of momordicine I on high-glucose-induced cardiac fibroblast activation. Rat cardiac fibroblasts were cultured in a high-glucose (25 mM) medium in the absence or presence of momordicine I, and the changes in collagen synthesis, transforming growth factor-β1 (TGF-β1) production, and related signaling molecules were assessed. Increased oxidative stress plays a critical role in the development of high-glucose-induced cardiac fibrosis; we further explored momordicine I’s antioxidant activity and its effect on fibroblasts. Our data revealed that a high-glucose condition promoted fibroblast proliferation and collagen synthesis and these effects were abolished by momordicine I (0.3 and 1 μM) pretreatment. Furthermore, the inhibitory effect of momordicine I on high-glucose-induced fibroblast activation may be associated with its activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the inhibition of reactive oxygen species formation, TGF-β1 production, and Smad2/3 phosphorylation. The addition of brusatol (a selective inhibitor of Nrf2) or Nrf2 siRNA significantly abolished the inhibitory effect of momordicine I on fibroblast activation. Our findings revealed that the antifibrotic effect of momordicine I was mediated, at least partially, by the inhibition of the TGF-β1/Smad pathway, fibroblast proliferation, and collagen synthesis through Nrf2 activation. Thus, this work provides crucial insights into the molecular pathways for the clinical application of momordicine I for treating diabetes-associated cardiac fibrosis.


2021 ◽  
Vol 14 (3) ◽  
pp. 263
Author(s):  
Duncan Horlock ◽  
David M. Kaye ◽  
Catherine E. Winbanks ◽  
Xiao-Ming Gao ◽  
Helen Kiriazis ◽  
...  

Cardiac fibrosis is associated with most forms of cardiovascular disease. No reliable therapies targeting cardiac fibrosis are available, thus identifying novel drugs that can resolve or prevent fibrosis is needed. Tilorone, an antiviral agent, can prevent fibrosis in a mouse model of lung disease. We investigated the anti-fibrotic effects of tilorone in human cardiac fibroblasts in vitro by performing a radioisotopic assay for [3H]-proline incorporation as a proxy for collagen synthesis. Exploratory studies in human cardiac fibroblasts treated with tilorone (10 µM) showed a significant reduction in transforming growth factor-β induced collagen synthesis compared to untreated fibroblasts. To determine if this finding could be recapitulated in vivo, mice with established pathological remodelling due to four weeks of transverse aortic constriction (TAC) were administered tilorone (50 mg/kg, i.p) or saline every third day for eight weeks. Treatment with tilorone was associated with attenuation of fibrosis (assessed by Masson’s trichrome stain), a favourable cardiac gene expression profile and no further deterioration of cardiac systolic function determined by echocardiography compared to saline treated TAC mice. These data demonstrate that tilorone has anti-fibrotic actions in human cardiac fibroblasts and the adult mouse heart, and represents a potential novel therapy to treat fibrosis associated with heart failure.


Author(s):  
SPENCER MARSH ◽  
MADELINE RAUDAT ◽  
BETHANY LEFEBER ◽  
LAURA BETH HERNDON ◽  
HOWARD HERBERT ◽  
...  

In clinical diabetic cardiomyopathy, hyperglycemia and dyslipidemia induce tissue injury, activation of cardiac fibroblasts and interstitial and perivascular fibrosis. Myofibroblasts repair the injured tissue by increasing collagen deposition in the cardiac interstitium and suppressing the activity of matrix metalloproteinases. The goal of this study was to find an ideal model to mimic the effect of high glucose concentration on human cardiac fibroblast activation. The profibrotic role of the transforming growth factor-[Formula: see text] (TGF-[Formula: see text]) and the protective modulation of nitric oxide were examined in two-dimensional and three-dimensional cell culture models, as well as tissue engineering models, that involved the use of cardiac fibroblasts cultured within myocardial matrix scaffolds mounted in a bioreactor that delivered biochemical and mechanical stimuli. Results showed that high glucose levels were potent pro-fibrotic stimuli. In addition, high glucose levels in concert with TGF-[Formula: see text] constituted very strong signals that induced human cardiac fibroblast activation. Cardiac fibroblasts cultured within decellularized myocardial scaffolds and exposed to biochemical and mechanical stimuli represented an adequate model for this pathology. In conclusion, the bioreactor platform was instrumental in establishing an in vitro model of early fibrosis; this platform could be used to test the effects of various agents targeted to mitigate the fibrotic processes.


2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Natalie M. Landry ◽  
Sunil G. Rattan ◽  
Krista L. Filomeno ◽  
Thomas W. Meier ◽  
Simon C. Meier ◽  
...  

AbstractWe have previously shown that overexpression of SKI, an endogenous TGF-β1 repressor, deactivates the pro-fibrotic myofibroblast phenotype in the heart. We now show that SKI also functions independently of SMAD/TGF-β signaling, by activating the Hippo tumor-suppressor pathway and inhibiting the Transcriptional co-Activator with PDZ-binding motif (TAZ or WWTR1). The mechanism(s) by which SKI targets TAZ to inhibit cardiac fibroblast activation and fibrogenesis remain undefined. A rat model of post-myocardial infarction was used to examine the expression of TAZ during acute fibrogenesis and chronic heart failure. Results were then corroborated with primary rat cardiac fibroblast cell culture performed both on plastic and on inert elastic substrates, along with the use of siRNA and adenoviral expression vectors for active forms of SKI, YAP, and TAZ. Gene expression was examined by qPCR and luciferase assays, while protein expression was examined by immunoblotting and fluorescence microscopy. Cell phenotype was further assessed by functional assays. Finally, to elucidate SKI’s effects on Hippo signaling, the SKI and TAZ interactomes were captured in human cardiac fibroblasts using BioID2 and mass spectrometry. Potential interactors were investigated in vitro to reveal novel mechanisms of action for SKI. In vitro assays on elastic substrates revealed the ability of TAZ to overcome environmental stimuli and induce the activation of hypersynthetic cardiac myofibroblasts. Further cell-based assays demonstrated that SKI causes specific proteasomal degradation of TAZ, but not YAP, and shifts actin cytoskeleton dynamics to inhibit myofibroblast activation. These findings were supported by identifying the bi-phasic expression of TAZ in vivo during post-MI remodeling and fibrosis. BioID2-based interactomics in human cardiac fibroblasts suggest that SKI interacts with actin-modifying proteins and with LIM Domain-containing protein 1 (LIMD1), a negative regulator of Hippo signaling. Furthermore, we found that LATS2 interacts with TAZ, whereas LATS1 does not, and that LATS2 knockdown prevented TAZ downregulation with SKI overexpression. Our findings indicate that SKI’s capacity to regulate cardiac fibroblast activation is mediated, in part, by Hippo signaling. We postulate that the interaction between SKI and TAZ in cardiac fibroblasts is arbitrated by LIMD1, an important intermediary in focal adhesion-associated signaling pathways. This study contributes to the understanding of the unique physiology of cardiac fibroblasts, and of the relationship between SKI expression and cell phenotype.


2021 ◽  
Author(s):  
Jamila H Siamwala ◽  
Francesco Pagano ◽  
Patrycja M Dubielecka ◽  
Alexander Zhao ◽  
Sonja Chen ◽  
...  

Background: Infiltration with inflammatory CD4+ T-cells and the accumulation of heterogeneous cardiac myofibroblasts are hallmarks of cardiac fibrosis and remodeling. The origin, identity, states, and functions of the resident cells involved in the transition from adaptive to maladaptive fibrotic remodeling, as well as the pathways of inflammatory regulation are unclear. Methods: We performed mass cytometry profiling of resident human ventricular cardiac fibroblasts (hVCF) and determined the identity of cells contained in fibrotic right ventricle autopsy tissues from individuals diagnosed with pulmonary hypertension and tissue from SUGEN/hypoxia rats exhibiting cardiac fibrosis. We further characterized the resident cardiac fibroblast sub-population morphologically, structurally and functionally using transcriptome and secretome analysis of the secreted cytokines, chemokines, proteins, metabolites using milliplex panels, proteomics and metabolomics pipelines. Results: Single-cell mass cytometry identified remarkable plasticity of resident human cardiac fibroblasts. We provide evidence of a sub-population of resident cardiac myofibroblasts expressing high levels of CD4+, a helper T-cell surface marker in addition to mesenchymal markers, αSMA and Vimentin in all the human donors. These cardiac cells co-expressing lymphoid CD4+and αSMA+ were localized to the fibrotic regions of the human right ventricular tissue and were a common feature in the interstitial and perivascular lesions of SUGEN/Hypoxia (SuHx) rats. CD3+CD4+ T-cell numbers were higher in the right ventricle compared with the left ventricle of SuHx, as determined by flow cytometry. In vitro, T-cell homing receptors CD44, Interleukin-1 receptor (IL-1R), and CCR2 were upregulated in cardiac fibroblasts in response to IL-1β. Exposure of cardiac fibroblasts to IL-1β led to upregulation of genes regulating extracellular matrix, collagen deposition and inflammation-related genes, and induced secretion of cytokines, chemokines, and metabolites involved in innate and adaptive humoral immune responses. Cell clustering, elevated phosphorylation of MAPK p38 and inflammatory NF-κB p65 and cell phenotype switching upon IL-1β stimulation reverted with the administration of an IL-1R antagonist. Conclusions: Our data expand concepts of heterogeneity of resident cardiac fibroblasts and plasticity in response to pro-inflammatory cytokines by the demonstration of a unique subpopulation of cardiac fibroblasts exhibiting attributes of both mesenchymal and lymphoid cells. Exposure of cardiac fibroblasts to the pro-inflammatory cytokine, IL-1β, induces a robust phenotypic response linked to extracellular matrix deposition and up-regulates an immune-associated phenotype linked to expression of immune markers and secretion of immunomodulatory cytokines and chemokines. We also propose that resident cardiac fibroblast transdifferentiation and phenotype switching maybe the key process involved in adaptive to maladaptive remodeling leading to fibrosis and failure. Non-standard abbreviations: CD4; Cluster of differentiation, αSMA; alpha smooth muscle actin, IL-1R; Interleukin-1-receptor, CCR2; C-X-C Motif Chemokine Receptor 2


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Qiankun Bao ◽  
Bangying Zhang ◽  
Ya Suo ◽  
Chen Liu ◽  
Qian Yang ◽  
...  

Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), known to be independently associated with cardiovascular diseases. However, the effect of IH on cardiac fibrosis and molecular events involved in this process are unclear. Here, we tested IH in angiotensin II (Ang II)-induced cardiac fibrosis and signaling linked to fibroblast activation. IH triggered cardiac fibrosis and aggravated Ang II-induced cardiac dysfunction in mice. Plasma thrombospondin-1 (TSP1) content was upregulated in both IH-exposed mice and OSA patients. Moreover, both in vivo and in vitro results showed IH-induced cardiac fibroblast activation and increased TSP1 expression in cardiac fibroblasts. Mechanistically, phosphorylation of STAT3 at Tyr705 mediated the IH-induced TSP1 expression and fibroblast activation. Finally, STAT3 inhibitor S3I-201 or AAV9 carrying a periostin promoter driving the expression of shRNA targeting Stat3 significantly attenuated the synergistic effects of IH and Ang II on cardiac fibrosis in mice. This work suggests a potential therapeutic strategy for OSA-related fibrotic heart disease.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qing-Yuan Gao ◽  
Hai-Feng Zhang ◽  
Zhi-Teng Chen ◽  
Yue-Wei Li ◽  
Shao-Hua Wang ◽  
...  

AimsActivation of cardiac fibroblasts (CF) is crucial to cardiac fibrosis. We constructed a cardiac fibroblast-related competing endogenous RNA (ceRNA) network. Potential functions related to fibrosis of “hub genes” in this ceRNA network were explored.Materials and MethodsThe Gene Expression Omnibus database was searched for eligible datasets. Differentially expressed messenger (m)RNA (DE-mRNA) and long non-coding (lnc)RNA (DE-lncRNA) were identified. microRNA was predicted and validated. A predicted ceRNA network was constructed and visualized by Cytoscape, and ceRNA crosstalk was validated. A Single Gene Set Enrichment Analysis (SGSEA) was done, and the Comparative Toxicogenomics Database (CTD) was employed to analyze the most closely associated pathways and diseases of DE-mRNA in the ceRNA network. The functions of DE-mRNA and DE-lncRNA in the ceRNA network were validated by small interfering (si)RNA depletion.ResultsThe GSE97358 and GSE116250 datasets (which described differentially expressed genes in human cardiac fibroblasts and failing ventricles, respectively) were used for analyses. Four-hundred-and-twenty DE-mRNA and 39 DE-lncRNA, and 369 DE-mRNA and 93 DE-lncRNA were identified, respectively, in the GSE97358 and GSE116250 datasets. Most of the genes were related to signal transduction, cytokine activity, and cell proliferation. Thirteen DE-mRNA with the same expression tendency were overlapped in the two datasets. Twenty-three candidate microRNAs were predicted and the expression of 11 were different. Only two DE-lncRNA were paired to any one of 11 microRNA. Finally, two mRNA [ADAM metallopeptidase domain 19, (ADAM19) and transforming growth factor beta induced, (TGFBI)], three microRNA (miR-9-5p, miR-124-3p, and miR-153-3p) and two lncRNA (LINC00511 and SNHG15) constituted our ceRNA network. siRNA against LINC00511 increased miR-124-3p and miR-9-5p expression, and decreased ADAM19 and TGFBI expression, whereas siRNA against SNHG15 increased miR-153-3p and decreased ADAM19 expression. ADAM19 and TGFBI were closely related to the TGF-β1 pathway and cardiac fibrosis, as shown by SGSEA and CTD, respectively. Depletion of two mRNA or two lncRNA could alleviate CF activation.ConclusionsThe CF-specific ceRNA network, including two lncRNA, three miRNA, and two mRNA, played a crucial role during cardiac fibrosis, which provided potential target genes in this field.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Jing Qu ◽  
Miaoling Li ◽  
Dongxu Li ◽  
Yanguo Xin ◽  
Junli Li ◽  
...  

Sigma-1 receptor (Sig1R), a chaperone in the endoplasmic reticulum (ER) membrane, has been implicated in cardiac hypertrophy; however, its role in cardiac fibroblast activation has not been established. This study investigated the possible association between Sig1R and this activation by subjecting mice to sham, transverse aortic constriction (TAC), and TAC plus fluvoxamine (an agonist of Sig1R) treatments. Cardiac function and fibrosis were evaluated four weeks later by echocardiography and histological staining. In an in vitro study, neonatal rat cardiac fibroblasts were treated with fluvoxamine or NE-100 (an antagonist of Sig1R) in the presence or absence of transforming growth factor beta1 (TGF-β1). Fibrotic markers, ER stress pathways, and autophagy were then investigated by qPCR, western blotting, immunofluorescence, confocal microscopy, and transmission electron microscopy. Fluvoxamine treatment reduced cardiac fibrosis, preserved cardiac function, and attenuated cardiac fibroblast activation. Inhibition of the IRE1/XBP1 pathway, a branch of ER stress, by a specific inhibitor of IRE1 endonuclease activity, attenuated the pathological process. Fluvoxamine stimulation of Sig1R restored autophagic flux in cardiac fibroblasts, indicating that Sig1R appears to play a protective role in the activation of cardiac fibroblasts by inhibiting the IRE1 pathway and restoring autophagic flux. Sig1R may therefore represent a therapeutic target for cardiac fibrosis.


2014 ◽  
Vol 306 (9) ◽  
pp. C794-C804 ◽  
Author(s):  
Hugo Aguilar ◽  
Eduardo Fricovsky ◽  
Sang Ihm ◽  
Magdalena Schimke ◽  
Lisandro Maya-Ramos ◽  
...  

Excess enzyme-mediated protein O-GlcNAcylation is known to occur with diabetes mellitus. A characteristic of diabetic cardiomyopathy is the development of myocardial fibrosis. The role that enhanced protein O-GlcNAcylation plays in modulating the phenotype of cardiac fibroblasts (CF) is unknown. To address this issue, rat CF were cultured in normal glucose (NG; 5 mM glucose) or high-glucose (HG; 25 mM) media for 48 h. Results demonstrate that CF cultured in HG have higher levels (∼50%) of overall protein O-GlcNAcylation vs. NG cells. Key regulators of collagen synthesis such as transforming-growth factor-β1 (TGF-β1), SMADs 2/3, and SMAD 7 protein levels, including those of arginase I and II, were altered, leading to increases in collagen levels. The nuclear transcription factor Sp1 and arginase II evidence excess O-GlcNAcylation in HG cells. Expression in CF of an adenovirus coding for the enzyme N-acetylglucosaminidase, which removes O-GlcNAc moieties from proteins, decreased Sp1 and arginase II O-GlcNAcylation and restored HG-induced perturbations in CF back to NG levels. These findings may have important pathophysiological implications for the development of diabetes-induced cardiac fibrosis.


2019 ◽  
Author(s):  
Matthew S. Stratton ◽  
Rushita A. Bagchi ◽  
Rachel A. Hirsch ◽  
Andrew S. Riching ◽  
Marina B. Felisbino ◽  
...  

AbstractSmall molecule inhibitors of the acetyl-histone binding protein BRD4 have been shown to block cardiac fibrosis in pre-clinical models of heart failure (HF). However, the mechanisms by which BRD4 promotes pathological myocardial fibrosis remain unclear. Here, we demonstrate that BRD4 functions as an effector of TGF-β signaling to stimulate conversion of quiescent cardiac fibroblasts into Periostin (Postn)-positive cells that express high levels of extracellular matrix. BRD4 undergoes stimulus-dependent, genome-wide redistribution in cardiac fibroblasts, becoming enriched on a subset of enhancers and super-enhancers, and leading to RNA polymerase II activation and expression of downstream target genes. Employing the SERTA domain-containing protein 4 (Sertad4) locus as a prototype, we demonstrate that dynamic chromatin targeting of BRD4 is controlled, in part, by p38 mitogen-activated protein kinase, and provide evidence of a novel function for Sertad4 in TGF-β-mediated cardiac fibroblast activation. These findings define BRD4 as a central regulator of the pro-fibrotic cell state of cardiac fibroblasts, and establish a signaling circuit for epigenetic reprogramming in HF.


Sign in / Sign up

Export Citation Format

Share Document