scholarly journals Process Technology, Applications and Thermal Resistivity of Basalt Fiber Reinforced SiOC Composites

Ceramics ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 298-307 ◽  
Author(s):  
Gadow ◽  
Weichand ◽  
Jiménez

Promising lightweight composite materials, bridging the gap between Polymer and Ceramic Matrix Composites, are manufactured as polymer derived ceramics by the use of polysiloxanes and basalt fibers. Such competitive free formable Hybrid Composites are supposed to be capable for lightweight applications in a temperature range between 300 °C and 850 °C and short time exposure up to over 1000 °C, even in oxidative atmosphere. Cheap raw materials like basalt fibers and siloxane resins in combination with performing manufacturing technologies can establish completely new markets for intermediate temperature composites. These attributes enable the Hybrid Composites as ideal material for fire retardant applications in automotive engineering and public transportation, as well as in fire protection systems in electrical and civil engineering applications. In this study, the most prominent fields of application and engineering solutions for Hybrid-CMC are reviewed and the results of the thermal resistivity analysis effectuated on basalt fiber reinforced SiOC samples are presented. This study consisted of several air exposures between 1 h and 50 h and temperatures in the range of 650 °C to 1100 °C. Remaining mechanical resistance was characterized by Impulse Excitation Technique (IET) and Interlaminar Shear Strength (ILSS) tests. Basalt fiber reinforced samples exhibited a decent level of mechanical performance even after the most demanding exposures. Due to the poor oxidation resistance of carbon fibers, Cf/SiOC composites were completely degraded after long-term exposure at 500 °C in air.

2021 ◽  
Vol 5 (4) ◽  
pp. 100
Author(s):  
Anjum Saleem ◽  
Luisa Medina ◽  
Mikael Skrifvars

New technologies in the automotive industry require lightweight, environment-friendly, and mechanically strong materials. Bast fibers such as kenaf, flax, and hemp reinforced polymers are frequently used composites in semi-structural applications in industry. However, the low mechanical properties of bast fibers limit the applications of these composites in structural applications. The work presented here aims to enhance the mechanical property profile of bast fiber reinforced acrylic-based polyester resin composites by hybridization with basalt fibers. The hybridization was studied in three resin forms, solution, dispersion, and a mixture of solution and dispersion resin forms. The composites were prepared by established processing methods such as carding, resin impregnation, and compression molding. The composites were characterized for their mechanical (tensile, flexural, and Charpy impact strength), thermal, and morphological properties. The mechanical performance of hybrid bast/basalt fiber composites was significantly improved compared to their respective bast fiber composites. For hybrid composites, the specific flexural modulus and strength were on an average about 21 and 19% higher, specific tensile modulus and strength about 31 and 16% higher, respectively, and the specific impact energy was 13% higher than bast fiber reinforced composites. The statistical significance of the results was analyzed using one-way analysis of variance.


2014 ◽  
Vol 21 (2) ◽  
pp. 211-217 ◽  
Author(s):  
I.D.G. Ary Subagia ◽  
Yonjig Kim

AbstractThis paper investigated the effect of the incorporation of basalt fibers on the tensile properties of carbon fiber-reinforced epoxy laminates manufactured by vacuum-assisted resin transfer molding. The purpose of this research was to design a carbon-basalt/epoxy hybrid composite material that is of low cost in production, is lightweight, and has good strength and stiffness. The tensile strength and stiffness of the hybrid laminates demonstrated a steady, linear decrease with an increase in basalt fiber content, but the fracture strain gradually increased together with the increase in the basalt layer content. In this study, the incorporation of basalt fibers into the carbon fiber-reinforced polymer (CFRP) showed lower tensile strength than CFRP but has higher tensile strain. Furthermore, we found that the arrangement and enhancement of basalt fiber into the CFRP significantly influence the mechanical properties of interply hybrid composites.


2013 ◽  
Vol 20 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Pandian Amuthakkannan ◽  
Vairavan Manikandan ◽  
Jebbas Thangaiah Winowlin Jappes ◽  
Marimuthu Uthayakumar

AbstractMechanical properties of fiber reinforcement that can be obtained by the introduction of basalt fibers in jute fiber-reinforced polyester composites have been analyzed experimentally. Basalt/jute fiber-reinforced hybrid polymer composites were fabricated with a varying fiber percentage by using compression molding techniques. The fabricated composite plates were subjected to mechanical testing to estimate tensile strength, flexural strength and impact strength of the composites. The effect of fiber content on basalt/jute fiber in the composites has been studied. Addition of jute fiber into basalt fiber composite makes it a cost-effective one. Incorporation of basalt fiber into the composites was at approximately 10%, 20%, up to 90%, and the jute fiber percentage was reduced from 90%, 80%, to 10% correspondingly. Mechanical properties were investigated as per ASTM standards. Tensile and flexural strengths were tested by using a computer-assisted universal testing machine, and impact strength by using an Izod impact tester. It has been observed that the addition of jute fiber to the basalt fiber polyester composites enhanced the mechanical properties. Water absorption of hybrid composites was also analyzed and was found to be proportional to fiber percentage.


2016 ◽  
Vol 16 (2) ◽  
pp. 69-74 ◽  
Author(s):  
Ayman M. M. Abdelhaleem ◽  
Mohammed Y. Abdellah ◽  
Hesham I. Fathi ◽  
Montasser Dewidar

AbstractAcrylonitrile-butadiene-styrene (ABS) has great verity applications in aerospace and automobiles industries. Mechanical strength of the ABS is superior to even that of impact resistant polystyrene. In addition metallic coatings can be applied to the surface of ABS moldings. The main aim of the present work is to investigate the mechanical properties of additives of basalt fibers (BF) to ABS with (5, 10, and 15) wt% embedded into the polymer matrix by using plastic injection molding technique. This new perceptions has been done on basalt fibers that have a potential low cost with its good mechanical performance. The ultimate tensile strength that obtained from the composite with 15 wt% is 56.67 MPa with 40.52 % increase value than neat ABS, Young’s modulus gradually increases with increasing the amount of additives. Impact un-notched strength decreases with a reported increment of 24.617 KJ.m–2. A Rockwell hardness test is also used and with the increases of additives the amount of hardness of the composite increases. A scan electron microscopy (SEM) on the fracture surface is captured to check the morphologies structure of the composite comparable with a neat ABS. and it is showed a very good distribution and bonding of the B.F. with the pure ABS. As well as the cost of the ABS and BF is reduced by a percentage of 15 %.


2017 ◽  
Vol 52 (14) ◽  
pp. 1907-1914 ◽  
Author(s):  
Yang Zhiming ◽  
Liu Jinxu ◽  
Feng Xinya ◽  
Li Shukui ◽  
Xu Yuxin ◽  
...  

Basalt fiber reinforced aluminum matrix composites with different fiber contents (i.e. 0 wt%, 10 wt%, 30 wt% and 50 wt%) were prepared by hot-press sintering. Microstructure analysis indicates that basalt fibers are uniformly distributed in 10% basalt fiber reinforced aluminum matrix composite. The interfacial bonding between basalt fibers and aluminum matrix is good, and there is no interface reaction between basalt fiber and aluminum matrix. Quasi-static tensile, quasi-static compression and dynamic compression properties of basalt fiber reinforced aluminum composites were studied, and the influences of basalt fiber content on mechanical properties were discussed. Meanwhile, the failure mechanisms of basalt fiber reinforced aluminum matrix composites with different fiber content were analyzed.


2011 ◽  
Vol 194-196 ◽  
pp. 1103-1108 ◽  
Author(s):  
Yong Xin Yang ◽  
Jie Lian

In this paper, mechanical performances of 480 specimens are tested and influences of basalt fiber ratio, slenderness, soakage material are studied. Results indicate that mechanical properties of BFRC are better than plain concrete. It can be found that the best mechanical performance may be get when the basalt fiber soaked by water-solubility material and its ratio at 8.4 to 14 kg per square meter as well as slenderness at 600 to 800.


2014 ◽  
Vol 88 ◽  
pp. 15-20 ◽  
Author(s):  
Rainer Gadow ◽  
Patrick Weichand

Polymer Matrix Composites (PMC) are often used in lightweight applications due to their excellent mechanical properties combined with a low density. The manufacturing technologies are fully developed and raw materials are cheap. The limiting factor of these reinforced polymers is the maximum service temperature. Ceramic Matrix Composites (CMC) are suitable for service temperatures up to 1500 °C and more. These composites are composed of ceramic matrices combined with ceramic fibers based on alumina or silicon carbide. This class of composites is handicapped by the high cost of processing and raw materials and therefore only attractive for applications in astronautics and military aviation. Composite materials, bridging the gap between PMC and CMC, are manufactured by the use of polysiloxanes, carbon-and basalt fibers. Such competitive free formable Hybrid-composites are capable for service temperatures up to 800 °C in oxidative atmosphere. In order to make the material attractive also for series applications, manufacturing technologies like filament wet winding, Resin Transfer Moulding (RTM) or pressing techniques are employed. Beside the improved thermal resistivity in comparison to reinforced polymers and light metals, a major benefit of SiOC composites is investigated in the field of friction materials. The excellent properties in wear resistance and an adjustable coefficient of friction make it an interesting alternative for CFC and CMC.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4285-4304 ◽  
Author(s):  
Alaa Mohammedameen ◽  
Abdulkadir Çevik ◽  
Radhwan Alzeebaree ◽  
Anıl Niş ◽  
Mehmet Eren Gülşan

Conventional concrete suffers from brittle failures under mechanical behaviour, and lack of ductility results in the loss of human life and property in earthquake zones. Therefore, the degree of ductility becomes significant in seismic regions. This paper investigates the influence of poly-vinyl alcohol fibers, basalt fiber-reinforced polymer (BFRP) and carbon fiber-reinforced polymer (CFRP) fabrics on the ductility and mechanical performance of low (LCFA) and high (HCFA) calcium fly ash-based engineered cementitious composite concrete. The study also focuses on the mechanical behaviour of the CFRP and BFRP materials using different matrix types exposed to 3.5% seawater environment. Cyclic loading and scanning electron microscopy observations were also performed to see the effect of chloride attack on mechanical performance and ductility of the specimens. In addition, utilization of CFRP and BFRP fabrics as a retrofit material is also evaluated. Results indicated that the degree of ductility and mechanical performance were found to be superior for the CFRP-engineered cementitious composite hybrid specimens under ambient environment, while LCFA-CFRP hybrid specimens showed better performance under seawater environment. The effect of matrix type was also found significant when engineered cementitious composite is used together with fiber-reinforced polymer materials. In addition, both fiber-reinforced polymer materials can be used as a retrofit material under seawater environment.


2019 ◽  
Vol 33 (14n15) ◽  
pp. 1940024
Author(s):  
Ji-Su Choi ◽  
Soo-Jeong Park ◽  
Zixuan Chen ◽  
Yun-Hae Kim

Basalt fiber (BF) is an environmentally friendly material which can reduce environmental problem. In this study, CF/BF composite materials that can reduce the volume of carbon fiber (CF) by hybridizing BF and CF were studied. BF was specially laminated on the surface of CF so that the CF does not come into contact with the external environment. Basalt fibers were designed based on the arrangement angles and volume fraction. Evaluation by tensile, bending and intermittent shear tests, showed that the volume fraction of BF was more influential than the arrangement angles. When the volume fraction of BF was approximately 27%, high mechanical properties were obtained at all arrangement angles used in this experiment.


Sign in / Sign up

Export Citation Format

Share Document