scholarly journals Recent Advances in Chemical Sensors for Soil Analysis: A Review

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Marina Nadporozhskaya ◽  
Ninel Kovsh ◽  
Roberto Paolesse ◽  
Larisa Lvova

The continuously rising interest in chemical sensors’ applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed.

2020 ◽  
Vol 16 (4) ◽  
pp. 454-486 ◽  
Author(s):  
Smita Verma ◽  
Vishnuvardh Ravichandiran ◽  
Nihar Ranjan ◽  
Swaran J.S. Flora

Nitrogen-containing heterocycles are one of the most common structural motifs in approximately 80% of the marketed drugs. Of these, benzimidazoles analogues are known to elicit a wide spectrum of pharmaceutical activities such as anticancer, antibacterial, antiparasitic, antiviral, antifungal as well as chemosensor effect. Based on the benzimidazole core fused heterocyclic compounds, crescent-shaped bisbenzimidazoles were developed which provided an early breakthrough in the sequence-specific DNA recognition. Over the years, a number of functional variations in the bisbenzimidazole core have led to the emergence of their unique properties and established them as versatile ligands against several classes of pathogens. The present review provides an overview of diverse pharmacological activities of the bisbenzimidazole analogues in the past decade with a brief account of its development through the years.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4672
Author(s):  
Mohamed H. Hassan ◽  
Cian Vyas ◽  
Bruce Grieve ◽  
Paulo Bartolo

The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4425
Author(s):  
Ana María Pineda-Reyes ◽  
María R. Herrera-Rivera ◽  
Hugo Rojas-Chávez ◽  
Heriberto Cruz-Martínez ◽  
Dora I. Medina

Monitoring and detecting carbon monoxide (CO) are critical because this gas is toxic and harmful to the ecosystem. In this respect, designing high-performance gas sensors for CO detection is necessary. Zinc oxide-based materials are promising for use as CO sensors, owing to their good sensing response, electrical performance, cost-effectiveness, long-term stability, low power consumption, ease of manufacturing, chemical stability, and non-toxicity. Nevertheless, further progress in gas sensing requires improving the selectivity and sensitivity, and lowering the operating temperature. Recently, different strategies have been implemented to improve the sensitivity and selectivity of ZnO to CO, highlighting the doping of ZnO. Many studies concluded that doped ZnO demonstrates better sensing properties than those of undoped ZnO in detecting CO. Therefore, in this review, we analyze and discuss, in detail, the recent advances in doped ZnO for CO sensing applications. First, experimental studies on ZnO doped with transition metals, boron group elements, and alkaline earth metals as CO sensors are comprehensively reviewed. We then focused on analyzing theoretical and combined experimental–theoretical studies. Finally, we present the conclusions and some perspectives for future investigations in the context of advancements in CO sensing using doped ZnO, which include room-temperature gas sensing.


1969 ◽  
Vol 1 (1) ◽  
pp. 90-110 ◽  
Author(s):  
J. Gani

The theory of storage processes, originally formulated by Moran [1] in 1954, has developed in the past fourteen years into a minor subfield of Applied Probability, closely allied to queueing theory. While dam models with discrete inputs are analogous to queueing processes, the essentially continuous nature of water inflows has distinguished generalized storage processes from queues. Indeed, some of the most complex of storage problems have arisen in the case of continuous flows.


2015 ◽  
Vol 44 (11) ◽  
pp. 3418-3430 ◽  
Author(s):  
J. Wencel-Delord ◽  
A. Panossian ◽  
F. R. Leroux ◽  
F. Colobert

Over the past decade the field of the synthesis of axially chiral compounds has been rapidly expanding. Not only key advances have been achieved concerning the already established strategies but also new synthetic routes have been devised. This review showcases the recent developments in this domain.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 134
Author(s):  
Eung-Soo Kim

The discovery and development of actinomycete secondary metabolites (ASMs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades [...]


1982 ◽  
Vol 4 (1) ◽  
pp. 3-3
Author(s):  
R. J. H.

It does not seem possible we are beginning year IV of PREP. Those who have been with us since the beginning will recall that the Pediatrics Review in Education Program, PREP, is designed as a six-year cycle. Each year objectives are developed by panels of pediatricians drawn from practice and teaching for two areas: Recent Advances of importance to the general pediatrician and Topics for Annual Review. Recent Advances cover the entire field of pediatrics, but are limited to information developed in the past six years; Topics are limited to a cluster area with no time limitation. For the 1982/83 Year, the Topics for Annual Review include community health, school health, accidents, poisoning and trauma, athletics and physical fitness, learning disabilities and school adjustment problems, adolescent medicine, delinquency, and drug abuse.


Nanoscale ◽  
2021 ◽  
Author(s):  
Congcong Zhao ◽  
Jiuxing Wang ◽  
Xuanyi Zhao ◽  
Zhonglin Du ◽  
Renqiang Yang ◽  
...  

The past decade has seen a tremendous development of organic solar cells (OSCs). To date, the high-performance OSCs have boosted the power conversion efficiencies (PCEs) over 17%, showing bright prospects...


2020 ◽  
Vol 6 (3) ◽  
pp. 0416-0420 ◽  
Author(s):  
Joshua Ighalo ◽  
Adewale George Adeniyi ◽  
Kevin Shegun Otoikhian

Over the years, Nigerian researchers in environmental engineering and chemistry have been evaluating a variety of technologies for the remediation of petroleum industry polluted surface and groundwater. In this mini-review, the recent advances in this regard over the past two years were evaluated. This was done as an appraisal of research efforts to understand the current research trend and gain a proper perspective of the required/needed future approach in the research area. It was observed that most studies are still focusing on evaluating the problems instead of finding actual solutions. Development of workable and novel solutions are urgently needed. It can be in the form of better remediation techniques or via the development of alternative technologies for utilizing the waste/pollutant materials. The paper has given a clear opinion on the progress of environmental protection and sustainability in the Nigerian context. The environmental regulations scenario in the country is marred by malpractices and corruption more stringent policy enforcement will help in the achievement of environmental protection.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 46
Author(s):  
Sihang Liu ◽  
Jingyi Tang ◽  
Fangqin Ji ◽  
Weifeng Lin ◽  
Shengfu Chen

Nonspecific protein adsorption impedes the sustainability of materials in biologically related applications. Such adsorption activates the immune system by quick identification of allogeneic materials and triggers a rejection, resulting in the rapid failure of implant materials and drugs. Antifouling materials have been rapidly developed in the past 20 years, from natural polysaccharides (such as dextran) to synthetic polymers (such as polyethylene glycol, PEG). However, recent studies have shown that traditional antifouling materials, including PEG, still fail to overcome the challenges of a complex human environment. Zwitterionic materials are a class of materials that contain both cationic and anionic groups, with their overall charge being neutral. Compared with PEG materials, zwitterionic materials have much stronger hydration, which is considered the most important factor for antifouling. Among zwitterionic materials, zwitterionic hydrogels have excellent structural stability and controllable regulation capabilities for various biomedical scenarios. Here, we first describe the mechanism and structure of zwitterionic materials. Following the preparation and property of zwitterionic hydrogels, recent advances in zwitterionic hydrogels in various biomedical applications are reviewed.


Sign in / Sign up

Export Citation Format

Share Document