scholarly journals The Origin and Propagation of the Antarctic Centennial Oscillation

Climate ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 112 ◽  
Author(s):  
W. Jackson Davis ◽  
Peter J. Taylor ◽  
W. Barton Davis

The Antarctic Centennial Oscillation (ACO) is a paleoclimate temperature cycle that originates in the Southern Hemisphere, is the presumptive evolutionary precursor of the contemporary Antarctic Oscillation (AAO), and teleconnects to the Northern Hemisphere to influence global temperature. In this study we investigate the internal climate dynamics of the ACO over the last 21 millennia using stable water isotopes frozen in ice cores from 11 Antarctic drill sites as temperature proxies. Spectral and time series analyses reveal that ACOs occurred at all 11 sites over all time periods evaluated, suggesting that the ACO encompasses all of Antarctica. From the Last Glacial Maximum through the Last Glacial Termination (LGT), ACO cycles propagated on a multicentennial time scale from the East Antarctic coastline clockwise around Antarctica in the streamline of the Antarctic Circumpolar Current (ACC). The velocity of teleconnection (VT) is correlated with the geophysical characteristics of drill sites, including distance from the ocean and temperature. During the LGT, the VT to coastal sites doubled while the VT to inland sites decreased fourfold, correlated with increasing solar insolation at 65°N. These results implicate two interdependent mechanisms of teleconnection, oceanic and atmospheric, and suggest possible physical mechanisms for each. During the warmer Holocene, ACOs arrived synchronously at all drill sites examined, suggesting that the VT increased with temperature. Backward extrapolation of ACO propagation direction and velocity places its estimated geographic origin in the Southern Ocean east of Antarctica, in the region of the strongest sustained surface wind stress over any body of ocean water on Earth. ACO period is correlated with all major cycle parameters except cycle symmetry, consistent with a forced, undamped oscillation in which the driving energy affects all major cycle metrics. Cycle period and symmetry are not discernibly different for the ACO and AAO over the same time periods, suggesting that they are the same climate cycle. We postulate that the ACO/AAO is generated by relaxation oscillation of Westerly Wind velocity forced by the equator-to-pole temperature gradient and propagated regionally by identified air-sea-ice interactions.

2013 ◽  
Vol 9 (4) ◽  
pp. 1733-1748 ◽  
Author(s):  
D. Veres ◽  
L. Bazin ◽  
A. Landais ◽  
H. Toyé Mahamadou Kele ◽  
B. Lemieux-Dudon ◽  
...  

Abstract. The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120–800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on δ15N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before. It is expected that the future contribution of both other long ice core records and other types of chronological constraints to the Datice tool will lead to further refinements in the ice core chronologies beyond the AICC2012 chronology. For the time being however, we recommend that AICC2012 be used as the preferred chronology for the Vostok, EDC, EDML and TALDICE ice core records, both over the last glacial cycle (this study), and beyond (following Bazin et al., 2013). The ages for NGRIP in AICC2012 are virtually identical to those of GICC05 for the last 60.2 ka, whereas the ages beyond are independent of those in GICC05modelext (as in the construction of AICC2012, the GICC05modelext was included only via the background scenarios and not as age markers). As such, where issues of phasing between Antarctic records included in AICC2012 and NGRIP are involved, the NGRIP ages in AICC2012 should therefore be taken to avoid introducing false offsets. However for issues involving only Greenland ice cores, there is not yet a strong basis to recommend superseding GICC05modelext as the recommended age scale for Greenland ice cores.


2020 ◽  
Vol 16 (4) ◽  
pp. 1565-1580
Author(s):  
Anders Svensson ◽  
Dorthe Dahl-Jensen ◽  
Jørgen Peder Steffensen ◽  
Thomas Blunier ◽  
Sune O. Rasmussen ◽  
...  

Abstract. The last glacial period is characterized by a number of millennial climate events that have been identified in both Greenland and Antarctic ice cores and that are abrupt in Greenland climate records. The mechanisms governing this climate variability remain a puzzle that requires a precise synchronization of ice cores from the two hemispheres to be resolved. Previously, Greenland and Antarctic ice cores have been synchronized primarily via their common records of gas concentrations or isotopes from the trapped air and via cosmogenic isotopes measured on the ice. In this work, we apply ice core volcanic proxies and annual layer counting to identify large volcanic eruptions that have left a signature in both Greenland and Antarctica. Generally, no tephra is associated with those eruptions in the ice cores, so the source of the eruptions cannot be identified. Instead, we identify and match sequences of volcanic eruptions with bipolar distribution of sulfate, i.e. unique patterns of volcanic events separated by the same number of years at the two poles. Using this approach, we pinpoint 82 large bipolar volcanic eruptions throughout the second half of the last glacial period (12–60 ka). This improved ice core synchronization is applied to determine the bipolar phasing of abrupt climate change events at decadal-scale precision. In response to Greenland abrupt climatic transitions, we find a response in the Antarctic water isotope signals (δ18O and deuterium excess) that is both more immediate and more abrupt than that found with previous gas-based interpolar synchronizations, providing additional support for our volcanic framework. On average, the Antarctic bipolar seesaw climate response lags the midpoint of Greenland abrupt δ18O transitions by 122±24 years. The time difference between Antarctic signals in deuterium excess and δ18O, which likewise informs the time needed to propagate the signal as described by the theory of the bipolar seesaw but is less sensitive to synchronization errors, suggests an Antarctic δ18O lag behind Greenland of 152±37 years. These estimates are shorter than the 200 years suggested by earlier gas-based synchronizations. As before, we find variations in the timing and duration between the response at different sites and for different events suggesting an interaction of oceanic and atmospheric teleconnection patterns as well as internal climate variability.


2012 ◽  
Vol 8 (6) ◽  
pp. 6011-6049 ◽  
Author(s):  
D. Veres ◽  
L. Bazin ◽  
A. Landais ◽  
H. Toyé Mahamadou Kele ◽  
B. Lemieux-Dudon ◽  
...  

Abstract. The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 time scale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al., (2012) focuses on the interval 120–800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on δ15N data employed as the Datice background scenario, the AICC2012 presents a new timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the see-saw mechanism, with maximum differences of about 500 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before.


2012 ◽  
Vol 8 (6) ◽  
pp. 1997-2017 ◽  
Author(s):  
J. Zumaque ◽  
F. Eynaud ◽  
S. Zaragosi ◽  
F. Marret ◽  
K. M. Matsuzaki ◽  
...  

Abstract. The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~60–30 cal ka BP) provides key issues to understand the atmosphere–ocean–cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth), retrieved during the MD114-IMAGES (International Marine Global Change Study) cruise from the southern part of the Faeroe Bank. This sector was under the proximal influence of European ice sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South) during the last glacial and thus probably responded to the MIS3 pulsed climatic changes. We conducted a multi-proxy analysis of core MD99-2281, including magnetic properties, x-ray fluorescence measurements, characterisation of the coarse (>150 μm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst – e.g. dinocyst – assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland ice cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material suggest increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281.


2016 ◽  
Vol 56 (4) ◽  
pp. 533-544 ◽  
Author(s):  
N. V. Vakulenko ◽  
V. M. Kotlyakov ◽  
F. Parrenin ◽  
D. M. Sonechkin

A concept of the anthropogenic origin of the current global climate warming assumes that growth of concentration of the atmospheric carbon dioxide and other greenhouse gases is of great concern in this process. However, all earlier performed analyses of the Antarctic ice cores, covering the time interval of several glacial cycles for about 1 000 000 years, have demonstrated that the carbon dioxide concentration changes had a certain lag relative to the air temperature changes by several hundred years during every beginning of the glacial terminations as well as at endings of interglacials. In contrast to these findings, a recently published careful analysis of Antarctic ice cores (Parrenin et al., 2013) had shown that both, the carbon dioxide concentration and global temperature, varied almost synchronously during the transition from the last glacial maximum to the Holocene. To resolve this dilemma, a special technique for analysis of the paleoclimatic time series, based on the wavelets, had been developed and applied to the same carbon dioxide concentration and temperature time series which were used in the above paper of Parrenin et al., 2013. Specifically, a stack of the Antarctic δ18O time series (designated as ATS) and the deuterium Dome C – EPICA ones (dD) were compared to one another in order to: firstly, to quantitatively estimate differences between time scales of these series; and, secondly, to clear up the lead–lag relationships between different scales variations within these time series. It was found that accuracy of the mutual ATS and dD time series dating lay within the range of 80–160 years. Perhaps, the mutual dating of the temperature and carbon dioxide concentration series was even worse due to the assumed displacement of air bubbles within the ice. It made us to limit our analysis by the time scales of approximately from 800 to 6000 years. But it should be taken into account that any air bubble movement changes the time scale of the carbon dioxide series as a whole. Therefore, if a difference between variations in any temperature and the carbon dioxide time series is found to be longer than 80–160 years, and if these variations are timescale‑dependent, it means that the bubble displacements are not essential, and so these advancing and delays are characteristic of the time series being compared. Our wavelet‑based comparative and different‑scale analysis confirms that the relationships between the carbon dioxide concentration and temperature variations were essentially timescale‑dependent during the transition from the last glacial maximum to the Holocene. The carbon dioxide concentration variations were ahead of the temperature ones during transition from the glacial maximum to the Boelling – Alleroud warming as well as from the Young Drias cooling to the Holocene optimum. However, the temperature variations were ahead during the transition from the Boelling – Alleroud warming to the Young Drias cooling and during the transition from the Holocene optimum to the present‑day climate.


1988 ◽  
Vol 10 ◽  
pp. 222-222
Author(s):  
D. Zardini ◽  
D. Raynaud ◽  
D. Scharffe ◽  
W. Seiler

A method has been developed for measuring N2O concentrations in the air extracted from the bubbles contained in ice cores. The air extraction is performed by cutting the ice into very small pieces with a rotating knife, in a controlled atmosphere. The N2O concentrations are measured by gas chromatography. The complete original procedure will be discussed, and the results of the different experimental tests given, with a discussion of the uncertainties.This method has been used to perform about 40 measurements on Antarctic ice samples. Ten air samples from the D57 core date approximately from the beginning of the seventeenth and twentieth centuries. The others were taken from the Dome C core and date from the Holocene and the period around the Last Glacial Maximum. The D57 results are in agreement with those of Pearman and others (1986), leading to a similar pre-industrial N2O level (270-290 ppb volume). Furthermore, our Dome C results suggest that during the Last Glacial Maximum atmospheric N2O content was not drastically different from the recent period.


2004 ◽  
Vol 39 ◽  
pp. 300-306 ◽  
Author(s):  
Rita Traversi ◽  
Carlo Barbante ◽  
Vania Gaspari ◽  
Ilaria Fattori ◽  
Ombretta Largiuni ◽  
...  

AbstractSpectrofluorimetric and spectrophotometric continuous flow analysis (CFA) methods were developed and applied to the determination of aluminium and iron in EPICA Dome C (East Antarctica) ice-core samples (6–585m depth). The methods are able to measure the fraction of Al and Fe which can be detected once the sample is filtered on a 5.0 μm membrane and acidified to pH 2. Both the methods present high sensitivity (detection limit of 10 ng L–1 for Al and 50 ng L–1 for Fe) and reproducibility (5% at sub-ppb level). The Fe and Al profiles show sharp decreases in concentrations in the last glacial/interglacial transition, reflecting the decreasing dust aerosol load. The two elements show a different pattern during the Antarctic Cold Reversal (ACR) climatic change, with high iron concentrations (similar to the glacial period) and low but increasing Al content during the ACR minimum. In order to interpret the Al and Fe data obtained by CFA, a comparison with Al and Fe composition, as measured by inductively coupled plasma sector field mass spectrometry (ICP-SFMS), was performed for Holocene, ACR and glacial periods. The percentage of CFA-Al with respect to ICP-SFMS-Al in the three periods shows a lower variability than CFA-Fe (3% in the glacial period and 64% in the ACR). This pattern may be explained by the different dominant iron sources in the different climatic periods. During the Last Glacial Maximum, Fe is proposed to arise mainly from insoluble continental dust, while a variety of ocean-recycled Fe, mainly distributed in fine particles and as more soluble species, shows a higher contribution in the ACR and, to a lesser extent, in the Holocene.


2021 ◽  
Author(s):  
Thomas Kleinen ◽  
Sergey Gromov ◽  
Benedikt Steil ◽  
Victor Brovkin

<p>Between the last glacial maximum (LGM) and preindustrial times (PI), the atmospheric concentration of CH<sub>4</sub>, as shown by reconstructions from ice cores, roughly doubled. It then doubled again from PI to the present. Ice cores, however, cannot tell us how that development will continue in the future, and ice cores also cannot shed light on the causes of the rise in methane, as well as the rapid fluctuations during periods such as the Bolling-Allerod and Younger Dryas.</p><p>We use a methane-enabled version of MPI-ESM, the Max Planck Institute for Meteorology Earth System Model, to investigate changes in methane cycling in a transient ESM experiment from the LGM to the present, continuing onwards into the future for the next millennium. The model is driven by prescribed orbit, greenhouse gases and ice sheets, with all other changes to the climate system determined internally. Methane cycling is modelled by modules representing the atmospheric transport and sink of methane, as well as terrestrial sources and sinks from soils, termites, and fires. Thus, the full natural methane cycle – with the exception of geological and animal emissions – is represented in the model. For historical and future climate, anthropogenic emissions of methane are considered, too.</p><p>We show that the methane increase since the LGM is largely driven by source changes, with LGM emissions substantially reduced in comparison to the early Holocene and preindustrial states due to lower temperature, CO<sub>2</sub>, and soil carbon. Depending on the future climate scenario, these dependencies then lead to further increases in CH<sub>4</sub>, with a further doubling of atmospheric CH<sub>4</sub> easily possible if one of the higher radiative forcing scenarios is followed. Furthermore, the future increases in CH<sub>4</sub> will persist for a long time, as CH<sub>4</sub> only decreases when the climate system cools again.</p>


1988 ◽  
Vol 11 ◽  
pp. 204-204
Author(s):  
L. Mounier ◽  
J. R. Petit ◽  
J. Jouzel ◽  
C. Lorius ◽  
Ye. S. Korotkevich ◽  
...  

The 2083 m Vostok Antarctic ice core provides a unique opportunity for access to many paleoclimatic and paleo-environmental proxy data. This core, which has been dated by using a glaciological model, fully covers the last glacial-interglacial cycle, and goes back to the ice age which preceded the last interglaciai (−160 ka B P ).A continuous deuterium record is now available and we have interpreted it in terms of local temperature changes. This record is dominated by the large 100 ka glacial-inter-glacial oscillation, with a maximum temperature amplitude of about 11°C; the long Last Glacial period is very well documented and it is confirmed that the warmest part of the Last Interglaciai period was about 2°C warmer than the Holocene. Comparison with the ice-volume marine record shows that the Vostok climate record is of relatively large geographical significance, which makes it possible to establish, over the last 160 ka, the link between worldwide climatic changes and the Vostok dust record that we present here.This dust content corresponds to the non-soluble microparticles. It was obtained on a discontinuous basis (1 sample = about ∼10 m). Due to the very low concentration of some samples (down to 20 x 10−9gg−1) and cracks in the ice from the first 1000 m depth, we used stringent decontamination procedures. Size distribution and total concentration were measured, using a Coulter counter and an optical microscope; the results were tested against chemical measurements (aluminium concentration). In previous studies, it has been shown that the main proportion of insoluble microparticles is of terrigenous origin and represents the small-sized (radius <2 μm) dust produced on the continents.The Vostok record displays an increase in dust concentration of up to 20 times during the coldest climatic periods, coupled with the presence of larger particles. It confirms, on a much longer time-scale, a characteristic previously noted in Antarctic and Greenland ice cores over the Last Glacial Maximum. This large increase is attributed to a greater areal extent of global tropical aridity during the cold periods, coupled with higher efficiency of atmospheric circulation in respect of dust production and transport. Beyond this, the relationship between the dust input and the successive stages during the Last Glacial is now very well documented and will be discussed with a view to correlating the Vostok climatic record with other marine and terrestrial paleodata.


Sign in / Sign up

Export Citation Format

Share Document