scholarly journals Measuring Food Anticipation in Mice

2018 ◽  
Vol 1 (1) ◽  
pp. 65-74
Author(s):  
Tomaz Martini ◽  
Jürgen Ripperger ◽  
Urs Albrecht

The interplay between the circadian system and metabolism may give animals an evolutionary advantage by allowing them to anticipate food availability at specific times of the day. Physiological adaptation to feeding time allows investigation of animal parameters and comparison of food anticipation between groups of animals with genetic alterations and/or post pharmacological intervention. Such an approach is vital for understanding gene function and mechanisms underlying the temporal patterns of both food anticipation and feeding. Exploring these mechanisms will allow better understanding of metabolic disorders and might reveal potential new targets for pharmacological intervention. Changes that can be easily monitored and that represent food anticipation on the level of the whole organism are a temporarily restricted increase of activity and internal body temperature.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Manjunath Ramanjaneya ◽  
Jayakumar Jerobin ◽  
Ilham Bettahi ◽  
Kodappully Sivaraman Siveen ◽  
Abdul-Badi Abou-Samra

AbstractObesity and insulin resistance are key elements of the metabolic syndrome, which includes type 2 diabetes (T2D), dyslipidemia, systemic inflammation, hypertension, elevated risk for cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD) and polycystic ovary syndrome (PCOS). C1Q Tumor necrosis factor-related proteins (CTRPs) have recently emerged as important regulators of metabolism as a core component in the interrelationship between insulin resistance, adiposity and inflammation. To date 15 CTRP members have been identified and most of the CTRPs are dysregulated in obesity, T2D, coronary artery disease and NAFLD. Pharmacological intervention and lifestyle modification alter expression of CTRPs in circulation and in metabolically active tissues. CTRPs enhance metabolism mainly through activation of AMPK/AKT dependent pathways and possess insulin sensitizing properties. Thus dysregulated expression of CTRPs in metabolic disorders could contribute to the pathogenesis of the disease. For these reasons CTRPs appear to be promising targets for early detection, prevention and treatment of metabolic disorders. This review article aims at exploring the role of CTRPs in metabolic syndrome.


2018 ◽  
Vol 42 (2) ◽  
pp. 328-337 ◽  
Author(s):  
Andrew M. Herberg ◽  
Véronique St-Louis ◽  
Michelle Carstensen ◽  
John Fieberg ◽  
Daniel P. Thompson ◽  
...  

1995 ◽  
Vol 268 (5) ◽  
pp. R1111-R1116 ◽  
Author(s):  
P. Depres-Brummer ◽  
F. Levi ◽  
G. Metzger ◽  
Y. Touitou

In a constant environment, circadian rhythms persist with slightly altered period lengths. Results of studies with continuous light exposure are less clear, because of short exposure durations and single-variable monitoring. This study sought to characterize properties of the oscillator(s) controlling the rat's circadian system by monitoring both body temperature and locomotor activity. We observed that prolonged exposure of male Sprague-Dawley rats to continuous light (LL) systematically induced complete suppression of body temperature and locomotor activity circadian rhythms and their replacement by ultradian rhythms. This was preceded by a transient loss of coupling between both functions. Continuous darkness (DD) restored circadian synchronization of temperature and activity circadian rhythms within 1 wk. The absence of circadian rhythms in LL coincided with a mean sixfold decrease in plasma melatonin and a marked dampening but no abolition of its circadian rhythmicity. Restoration of temperature and activity circadian rhythms in DD was associated with normalization of melatonin rhythm. These results demonstrated a transient internal desynchronization of two simultaneously monitored functions in the rat and suggested the existence of two or more circadian oscillators. Such a hypothesis was further strengthened by the observation of a circadian rhythm in melatonin, despite complete suppression of body temperature and locomotor activity rhythms. This rat model should be useful for investigating the physiology of the circadian timing system as well as to identify agents and schedules having specific pharmacological actions on this system.


Author(s):  
N. D. Ganyushina ◽  
◽  
A. V. Korosov ◽  
N. A. Litvinov ◽  
N. A. Chetanov ◽  
...  

2017 ◽  
Vol 60 (3) ◽  
pp. 19-25
Author(s):  
Sławomir Kujawski ◽  
Joanna Słomko ◽  
Monika Zawadka-Kunikowska ◽  
Mariusz Kozakiewicz ◽  
Jacek J. Klawe ◽  
...  

Abstract Changes observed in the core body temperature of divers are the result of a multifaceted response from the body to the change of the external environment. In response to repeated activities, there may be a chronic, physiological adaptation of the body’s response system. This is observed in the physiology of experienced divers while diving. The purpose of this study is to determine the immediate and delayed effects of hyperbaric exposure on core temperature, as well as its circadian changes in a group of three experienced divers. During compression at 30 and 60 meters, deep body temperature values tended to increase. Subsequently, deep body temperature values showed a tendency to decrease during decompression. All differences in core temperature values obtained by the group of divers at individual time points in this study were not statistically significant.


Author(s):  
Richard T. Meyer ◽  
Bin Yao

Previous research has assumed that a perfect Proton Exchange Membrane Fuel Cell (PEMFC) body temperature manager is available. Maintaining this temperature at a desired value can ensure a high reaction efficiency over all operation. However, fuel cell internal body temperature control has not been specifically presented so far. This work presents such control, using a Multiple Input Single Output (MISO) fuel cell cooling system to regulate the internal body temperature of a PEMFC intended for transportation. The cooling system plant is taken from a recently developed hydrogen/air PEMFC total system model. It is linearized and used to design a series of controllers via μ-synthesis. μ-synthesis is chosen since system nonlinearities can be handled as parameter uncertainties. A controller must coordinate the desired fuel cell internal temperature and commanded mass flow rates of the coolant and cooling air. Each linear controller is created for a segment of the expected current density range. Plant parameters are expected to vary over their linearized values in each segment. Also, a common set of μ-synthesis weighting functions has been developed to ease controller design at different operating points. Thus, the nonlinear cooling subsystem can be controlled with a series of current density scheduled linear controllers. Current density step change simulations are presented to compare the controller closed loop performance and open loop response which uses cooling system flow rates taken from an optimal steady state solution of the whole fuel cell system. Furthermore, a closed loop sinusoid response is also given. These show that the closed loop driven internal fuel cell temperature will vary little during operation. However, this will only be true over the range that the cooling system is required to be active.


2016 ◽  
Vol 283 (1839) ◽  
pp. 20161551 ◽  
Author(s):  
Glenn J. Tattersall ◽  
Damien Roussel ◽  
Yann Voituron ◽  
Loïc Teulier

This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting.


2019 ◽  
Vol 26 (4) ◽  
pp. 147
Author(s):  
Aryani Sismin Satyaningtijas ◽  
Agik Suprayogi ◽  
Ardiansyah Nurdin ◽  
Huda S. Darusman

This study aims to obtain the physiological value of dugongs that live in natural habitats (in-situ) as protected wildlife, namely on the coast of Lingayan Island, Toli-Toli Regency. Wild dugongs caught on the beach were put into a net cage. After 14 days of living in a beach cage, measurements of heart rate, respiration, and body temperature were measured using non-invasive methods. This study showed that the value of heart rate, respiration, and body temperature were measured (80.00±17.32) beats/minutes, (17.33±6.80) inspiration/minute, and (32.75±0.07)°C. This physiological value is higher when compared to dugongs that live in captivity, this is likely due to the process of homeostasis through physiological adaptation mechanisms. The physiological value of the dugong is very important for the advancement of dugong animal health science and technology. Besides this finding can be a medical reference that is very useful for veterinarians in the diagnostic and therapeutic process.


Sign in / Sign up

Export Citation Format

Share Document