scholarly journals Tribological Properties and Corrosion Resistance of Porous Structure Ni-Mo/ZrO2 Alloys

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 767
Author(s):  
Ning Li ◽  
Hong Xu ◽  
Xinhui Li ◽  
Weizeng Chen ◽  
Lijuan Zheng ◽  
...  

Ni-Mo-ZrO2 composite coatings were produced by pulse electrodeposition technique from alkaline electrolytes containing dispersed ZrO2 nanopowder. The structure, microhardness, corrosion properties and tribological properties of Ni-Mo-ZrO2 composites with different content of molybdenum and ZrO2 have also been examined. Structural characterization was performed using X-ray diffraction (XRD) and a scanning electron microscope (SEM). It was found that an increase in molybdate concentration in the electrolyte affects the microstructure, microhardness, corrosion properties and tribological properties of the amount of co-deposited ZrO2 nanoparticles. The incorporation of ZrO2 nanoparticles into the Ni-Mo alloy matrix positively affects the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coatings. In addition, both the coefficient of friction and the salt-water lubrication sliding wear rate of Ni-Mo-ZrO2 coatings decreased with increasing the ZrO2 content. Wear test and corrosion resistance test results indicated that the intermetallic composite had an excellent wear-resistance and corrosion resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases Ni-Mo and polarization effect of ZrO2 nanoparticles.

2013 ◽  
Vol 765 ◽  
pp. 663-667
Author(s):  
Marek Nowak ◽  
Mieczysław Opyrchał ◽  
Sonia Boczkal ◽  
Janusz Żelechowski

Composite Ni/Al2O3 coatings were electrochemically deposited from a Watts bath modified with the organic additions of dioctyl sulphosuccinate sodium salt C20H37NaO7S–(DSS) and 2,3-dihydroxy-1,2 benzisothiazol-3-one 1,1-dioxide C7H5NO3–(LSA). The effect of different amount (50 and 100 g/l) of Al2O3 powder and organic additions on microstructure, microhardness, corrosion resistance and tribological properties was investigated. The coatings were examined by optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) techniques. The electrochemical behaviour of the coatings in corrosive solutions (1 M NaCl and 1 M Na2SO4) was investigated by potentiodynamic polarisation. The tribological properties were investigated by the Taber abrasive wear test, a standard test often applied in industrial practice. The results show that Al2O3 particles are uniformly distributed in the composite coatings compared with coatings without organic additions. The addition of organic compounds also reduced the size of the forming nickel crystallites and improved the tribological and corrosion properties of coatings containing the dispersed hard particles of Al2O3 added in an amount of 50 g/l and the addition of organic LSA and DSS compounds.


Author(s):  
Prasanna Gadhari ◽  
Prasanta Sahoo

Electroless nickel composite coatings possess excellent mechanical and tribological properties such as, hardness, wear and corrosion resistance. Composite coatings can easily be coated not only on electrically conductive materials but also on non-conductive materials like as fabrics, plastics, rubber, etc. This review emphasizes on the development of electroless nickel composite coatings by incorporating different types of hard/soft particles (micro/nano size) in the electroless Ni-P matrix to improve the mechanical and tribological properties of the coatings. The preparation of electroless bath for nickel-phosphorus composite coating, methods to incorporate hard and/or soft particles in the bath, factors affecting the particle incorporation in the coating and its effect on coating structure, hardness, wear resistance, friction behavior, corrosion resistance, and mechanical properties are discussed thoroughly.


Author(s):  
L. Rama Krishna ◽  
G. Sundararajan

This article presents the brief overview of fairly recent and eco-friendly micro arc oxidation (MAO) coating technology. The weight-cost-performance benefits in general raised the interest to utilize lightweight materials, especially the aluminum and its alloys. Despite numerous engineering advantages, the aluminum alloys themselves do not possess suitable tribology and corrosion resistance. Therefore, improvements in surface properties are essential to enable developing potential industrial applications. For improving wear and corrosion resistance of Al alloys, the most demanding surface properties are high hardness and chemical inertness. The technical and technological limitations associated with traditional anodizing and hard anodizing processes have been the strongest driving force behind the development of new MAO technology. While presenting the key technological elements associated with the MAO process, the basic mechanism of coating formation and its phase gradient nature is presented. Influence of various process parameters including the electrolyte composition has been discussed. The typical microstructural features and distribution of α- and γ-Al2O3 phases across the coating thickness as a key strategy to form dense coatings with required mechanical, tribological, and corrosion properties which are vital to meet potential application demands are briefly illustrated.


2017 ◽  
pp. 1303-1326
Author(s):  
Prasanna Gadhari ◽  
Prasanta Sahoo

Electroless nickel coatings are widely popular in various industrial sectors due to their excellent tribological properties. The present study considers optimization of coating parameters along with annealing temperature to improve microhardness and corrosion resistance of Ni-P-TiO2 composite coatings. Grey relational analysis is used to find out the optimal combination of coating parameters. From the analysis, it is confirmed that annealing temperature of the coating has the most significant effect and amount of titanium particles in the coating has some significant effect on corrosion properties of the coating. The same trend is observed in case of combined study of corrosion behavior and microhardness. The surface morphology, phase transformation and the chemical composition are examined using scanning electron microscopy, X-ray diffraction analysis and energy dispersive analysis respectively. The Ni-P-TiO2 composite coating revealed nodular structure with almost uniform distribution of titanium particles and it turns in to crystalline structure after heat treatment.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 533
Author(s):  
Kaixiong Gao ◽  
Zhaolong Wang ◽  
Qian Jia ◽  
Bin Zhang ◽  
Zhixing Mou ◽  
...  

Recycling carbon dioxide (CO2) for weakening the greenhouse effect is still an outstanding question. Although many chemical methods have been designed for CO2 conversion, they is still a need to develop new ways for CO2 recycling. Plasma methods were employed to convert CO2 into energy molecules, with the addition of H2, H2O and so on. Non heavy elements, like Ti, Cr, Si and Mo and so forth, were employed to take part in a reactive process, which might be very interesting for special scientific interest. In this work, magnetron sputtering method was used not only for igniting the plasma but also for providing Ti elements involved in reactions, via the selected Ti target. One can confirm that the TiCxOy films were successfully grew via sputtering a Ti target in CO2 atmosphere with Ar as dilute gas, which proved that CO2 is a key player in the matter of the involvement of excited CO2+, CO+, CO3− and so on, in the growth process reacting with Ti ions. The TiCxOy films exhibit the highest hardness (20.3 GPa), lowest friction coefficient (0.065) and the best corrosion resistance. The growth of the TiCxOy films are not only a new strategy for consuming CO2 but also a good way for reusing it for preparing TiCxOy films with high hardness for anti-corrosion and reducing friction. Moreover, reducing CO2 emissions via energy saving (through reducing friction and corrosion resistance) and recycling existing CO2 are both important for mitigating the greenhouse effect.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Guangyu Han ◽  
Youfeng Zhang

Abstract Composite coatings of TiB were successfully obtained on the surface of a Ti–6Al–4V alloy by in situ laser cladding technology using Ti/B/Nd2O3 powders. The microstructure and corrosion resistance of the fabricated composite coatings were investigated because relevant studies have been thus far limited in this field. The results indicate that the cladding coating and the substrate combined well via metallurgy after laser cladding treatment, and no obvious cracks were observed in the cladding coatings. The coatings comprise only the TiB and the α-Ti phase. The addition of Nd2O3 promoted the formation of a uniform and refined microstructure of the cladding coatings, and a well-defined structure was obtained when the added Nd2O3 content was 2 wt%. The microhardness of the cladding coating obviously improved by 3 to 4 fold above that of the Ti–6Al–4V substrate. Moreover, the corrosion properties significantly improved by adding Nd2O3 into the coatings. Electrical impedance spectroscopy and polarization tests showed that the best corrosion resistance of the cladding coating was achieved with the addition of 2 wt% Nd2O3. All samples revealed obvious near-capacitive behavior after immersion in a corrosive medium.


2009 ◽  
Vol 79-82 ◽  
pp. 795-798 ◽  
Author(s):  
Hong Ye ◽  
X.B. Zhang ◽  
Z.F. Xue ◽  
Y.H. Fan ◽  
Ke Chen

The composite coatings of self-flux alloy matrix reinforced by WC-12%Co were produced on the surface of 45 steel using laser cladding technology. The effects of CeO2 to macro-morphology, microstructure, hardness, wear resistance and corrosion resistance of cladding layer were investigated. The results show that rare earths oxide (CeO2) added laser cladding coating has distribution, dimension phases and less deficiency. CeO2 could promote liquating process of WC, increasing the quantity and distribute uniformity of intermetallic compounds in laser cladding layer. Because of dispersion precipitation and fine-crystal strengthen effect, laser cladding layer with CeO2 has higher microhardness, wearing resistance and better corrosion resistance properties.


2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540022 ◽  
Author(s):  
Shu-Jen Wang ◽  
Yuxin Wang ◽  
Xin Shu ◽  
Seeleng Tay ◽  
Wei Gao ◽  
...  

The duplex Nickel–Boron–Titania/Nickel ( Ni – B – TiO 2/ Ni ) coatings were deposited on mild steel by using two baths with Ni as the inner layer. TiO 2 nanoparticles were incorporated into the Ni – B coatings as the outer layer by using solid particle mixing method. The microstructure, morphology and corrosion resistance of the duplex Ni – B – TiO 2/ Ni nanocomposite coatings were systemically investigated. The results show that the duplex interface was uniform and the adhesion between two layers was very good. The microhardness of duplex Ni – B – TiO 2/ Ni coating was much higher than the Ni coating due to the outer layer of Ni – B – TiO 2 coating. The corrosion resistance of the duplex Ni – B – TiO 2/ Ni coating was also significantly improved comparing with single Ni – B coating. The Ni – B –10 g/L TiO 2/ Ni coating was found to have the best corrosion resistance among these duplex coatings. This type of duplex Ni – B – TiO 2/ Ni coating, with high hardness and good corrosion resistance properties, should be able to find broad applications under adverse environmental conditions.


2011 ◽  
Vol 471-472 ◽  
pp. 203-208
Author(s):  
Arman Zarebidaki ◽  
Saeed Reza Allahkaram

Ni-P/nano- SiC composite coatings were deposited in different concentrations of SiC nano-particles in the bath. The hardness and corrosion resistance of the composite coatings with different content of SiC nano-particles were measured. Moreover, the structure of the composite coatings was investigated by means of X-ray diffraction (XRD), while their morphologies and elemental composition were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS). Results showed that co-deposited SiC nano-particles contributed to increase the hardness but corrosion resistance of electroless Ni-P coatings decreased due to agglomeration of nano-particles and increasing porosity of coatings.


Author(s):  
Prasanna Gadhari ◽  
Prasanta Sahoo

Electroless nickel coatings are widely popular in various industrial sectors due to their excellent tribological properties. The present study considers optimization of coating parameters along with annealing temperature to improve microhardness and corrosion resistance of Ni-P-TiO2 composite coatings. Grey relational analysis is used to find out the optimal combination of coating parameters. From the analysis, it is confirmed that annealing temperature of the coating has the most significant effect and amount of titanium particles in the coating has some significant effect on corrosion properties of the coating. The same trend is observed in case of combined study of corrosion behavior and microhardness. The surface morphology, phase transformation and the chemical composition are examined using scanning electron microscopy, X-ray diffraction analysis and energy dispersive analysis respectively. The Ni-P-TiO2 composite coating revealed nodular structure with almost uniform distribution of titanium particles and it turns in to crystalline structure after heat treatment.


Sign in / Sign up

Export Citation Format

Share Document