scholarly journals Effect of Microcapsules of a Waterborne Core Material on the Properties of a Waterborne Primer Coating on a Wooden Surface

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 657 ◽  
Author(s):  
Xiaoxing Yan ◽  
Wenwen Peng

Microcapsules of a waterborne core material were prepared using a waterborne primer. The microcapsules of the waterborne core material were added to the waterborne primer to explore the effects of different core–shell ratios and mass fractions of the microcapsules on the property of the waterborne primer coating on the wooden surface. The results show that as the mass fraction of the microcapsules increased, the chromatic aberration increased by degrees, the glossiness decreased gradually, and the hardness increased by degrees, whilst—except for the coating with 0.50:1 microcapsules—the adhesion decreased gradually. When the mass fraction of the microcapsules increased, the impact resistance increased first and decreased later, or remained unchanged after reaching a certain value. When the mass fraction of the microcapsules increased, the elongation at the break increased first and decreased later. When the core–shell ratio was small and the mass fraction was between 5.0% and 15.0%, the coating had better liquid resistance. When the core–shell ratio was 0.67:1 and the mass fraction was 10.0%, the overall property of the coating on the Basswood was the best. The technology of microencapsulation provides a technical reference for the waterborne primer with self-repair qualities on the surface of wooden products.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 785 ◽  
Author(s):  
Xiaoxing Yan ◽  
Yijuan Chang

In this paper, melamine–formaldehyde (MF) was used as the wall material, and epoxy resin was used as the core material to prepare microcapsules. The optical properties, mechanical properties and ageing resistance of waterborne topcoat were investigated by adding different mass fractions of microcapsules into the waterborne topcoat. Through scanning electron microscopy and infrared spectroscopy analysis, the prepared microcapsules of core-wall ratio of 0.50 were more uniform. It was found that when the mass fraction of microcapsules is less than 10.0% and the core–wall ratio is 0.50, the original color difference of the coating can be maintained. With the increase in microcapsule mass fraction, the gloss of the topcoat film gradually decreases. The mass fraction of the microcapsule of 4.0% with the core–wall ratio of 0.50 can maintain the original gloss of 30.0 GU. The topcoat film with the MF-coated epoxy resin microcapsules of the core–wall ratio of 0.50 has high impact resistance, adhesion and hardness. The results showed that the gloss loss and color difference of the coating with the MF-coated epoxy microcapsules were the lowest when the mass fraction of microcapsules was 4.0%, indicating that microcapsules can improve the stability of coating. These results lay a technical foundation for the development and application of high-performance wood coatings.



Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1013
Author(s):  
Xiaoxing Yan ◽  
Wenting Zhao ◽  
Lin Wang ◽  
Xingyu Qian

The effects of the core-shell ratio and concentration of urea formaldehyde (UF) resin-coated waterborne acrylic resin microcapsules on the optical properties, mechanical properties and liquid resistance of waterborne topcoat coatings on the surface of Tilia europaea were investigated. With the increase of microcapsule concentration, the color difference and hardness of the paint film gradually increased, the gloss and adhesion of the paint film gradually decreased, and the impact resistance and elongation at break of the paint film increased first and then decreased. With the increase of the core-shell ratio, the hardness and impact resistance of the paint film increased first and then decreased, and the adhesion of the paint film decreased gradually. Red ink had a great influence on the liquid resistance of paint film. When the core-shell ratio of UF-coated waterborne acrylic resin microcapsule was 0.58:1 and the microcapsule concentration was 10.0%, the comprehensive performance of paint film on Tilia europaea was better. The prepared self-healing microcapsules applied to the waterborne coatings committed to prolonging the service life of the paint film.



Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Christian Zambrzycki ◽  
Runbang Shao ◽  
Archismita Misra ◽  
Carsten Streb ◽  
Ulrich Herr ◽  
...  

Core-shell materials are promising functional materials for fundamental research and industrial application, as their properties can be adapted for specific applications. In particular, particles featuring iron or iron oxide as core material are relevant since they combine magnetic and catalytic properties. The addition of an SiO2 shell around the core particles introduces additional design aspects, such as a pore structure and surface functionalization. Herein, we describe the synthesis and application of iron-based core-shell nanoparticles for two different fields of research that is heterogeneous catalysis and water purification. The iron-based core shell materials were characterized by transmission electron microscopy, as well as N2-physisorption, X-ray diffraction, and vibrating-sample magnetometer measurements in order to correlate their properties with the performance in the target applications. Investigations of these materials in CO2 hydrogenation and water purification show their versatility and applicability in different fields of research and application, after suitable individual functionalization of the core-shell precursor. For design and application of magnetically separable particles, the SiO2 shell is surface-functionalized with an ionic liquid in order to bind water pollutants selectively. The core requires no functionalization, as it provides suitable magnetic properties in the as-made state. For catalytic application in synthesis gas reactions, the SiO2-stabilized core nanoparticles are reductively functionalized to provide the catalytically active metallic iron sites. Therefore, Fe@SiO2 core-shell nanostructures are shown to provide platform materials for various fields of application, after a specific functionalization.



2021 ◽  
Author(s):  
Nicolas Gaillard ◽  
Matthieu Olivaud ◽  
Alain Zaitoun ◽  
Mahmoud Ould-Metidji ◽  
Guillaume Dupuis ◽  
...  

Abstract Polymer flooding is one of the most mature EOR technology applied successfully in a broad range of reservoir conditions. The last developments made in polymer chemistries allowed pushing the boundaries of applicability towards higher temperature and salinity carbonate reservoirs. Specifically designed sulfonated acrylamide-based copolymers (SPAM) have been proven to be stable for more than one year at 120°C and are the best candidates to comply with Middle East carbonate reservoir conditions. Numerous studies have shown good injectivity and propagation properties of SPAM in carbonate cores with permeabilities ranging from 70 to 150 mD in presence of oil. This study aims at providing new insights on the propagation of SPAM in carbonate reservoir cores having permeabilities ranging between 10 and 40 mD. Polymer screening was performed in the conditions of ADNOC onshore carbonate reservoir using a 260 g/L TDS synthetic formation brine together with oil and core material from the reservoir. All the experiments were performed at residual oil saturation (Sor). The experimental approach aimed at reproducing the transport of the polymer entering the reservoir from the sand face up to a certain depth. Three reservoir coreflood experiments were performed in series at increasing temperatures and decreasing rates to mimic the progression of the polymer in the reservoir with a radial velocity profile. A polymer solution at 2000 ppm was injected in the first core at 100 mL/h and 40°C. Effluents were collected and injected in the second core at 20 mL/h and 70°C. Effluents were collected again and injected in the third core at 4 mL/h and 120°C. A further innovative approach using reservoir minicores (6 mm length disks) was also implemented to screen the impact of different parameters such as Sor, molecular weight and prefiltration step on the injectivity of the polymer solutions. According to minicores data, shearing of the polymer should help to ensure good propagation and avoid pressure build-up at the core inlet. This result was confirmed through an injection in a larger core at Sor and at 120°C. When comparing the injection of sheared and unsheared polymer at the same concentration, core inlet impairment was suppressed with the sheared polymer and the same range of mobility reduction (Rm) was achieved in the internal section of the core although viscosity was lower for the sheared polymer. Such result indicates that shearing is an efficient way to improve injectivity while maximizing the mobility reduction by suppressing the loss of product by filtration/retention at the core inlet. This paper gives new insights concerning SPAM rheology in low permeability carbonate cores. Additionally, it provides an innovative and easier approach for screening polymer solutions to anticipate their propagation in more advanced coreflooding experiments.



2019 ◽  
Vol 14 ◽  
pp. 155892501985944
Author(s):  
Jitlada Boonlertsamut ◽  
Supaphorn Thumsorn ◽  
Toshikazu Umemura ◽  
Hiroyuki Hamada ◽  
Atsushi Sakuma

In this work, the spinning abilities of polyoxymethylene-based core–sheath bicomponent fibers were investigated. Bicomponent fibers were prepared using polyoxymethylene as the core material and poly(lactic acid) blended with polyoxymethylene or pure polyoxymethylene as sheath materials, and their characteristics were investigated and compared. Fiber properties such as elongation are important because they directly relate to the spinning performance during fiber processing. This work reports the impact of the composition designation of the core–sheath bicomponent fibers on the controllable stability of poly(lactic acid) in polyoxymethylene–poly(lactic acid) blends in the fibers, as well as the influence of the core–sheath material on the structure, fiber diameter and distribution, thermal stability, and mechanical properties of the core–sheath bicomponent fibers. It was found that the selection of core and sheath materials affected the structural characteristics of the fibers. The polyoxymethylene core–polyoxymethylene sheath (FV) fiber showed dimensional stability. However, the polyoxymethylene core–poly(lactic acid)/polyoxymethylene sheath (FT30) fiber provided the optimum limit of poly(lactic acid) content for controlling the stable properties of the core–sheath bicomponent fibers.



Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 152 ◽  
Author(s):  
Jong-Ho Back ◽  
Dooyoung Baek ◽  
Jae-Ho Shin ◽  
Seong-Wook Jang ◽  
Hyun-Joong Kim ◽  
...  

Epoxy foam adhesives are widely used for weight reduction, watertight property, and mechanical reinforcement effects. However, epoxy foam adhesives have poor impact resistance at higher expansion ratios. Hence, we prepared an epoxy composite foam adhesive with core–shell rubber (CSR) particles to improve the impact resistance and applied it to automotive structural adhesives. The curing behavior and pore structure were characterized by differential scanning calorimetry (DSC) and X-ray computed tomography (CT), respectively, and impact wedge–peel tests were conducted to quantitatively evaluate the resistance to cleavage of the CSR/epoxy composite foam adhesives under impact. At 5 and 10 phr CSR contents, the pore size and expansion ratio increased sufficiently due to the decrease in curing rate. However, at 20 phr CSR content, the pore size decreased, which might be due to the steric hindrance effect of the CSR particles. Notably, at 0 and 0.1 phr foaming agent contents, the resistance to cleavage of the adhesives under the impact wedge–peel condition significantly improved with increasing CSR content. Thus, the CSR/epoxy composite foam adhesive containing 0.1 phr foaming agent and 20 phr CSR particles showed high impact resistance (EC = 34,000 mJ/cm2) and sufficient expansion ratio (~148%).



2010 ◽  
Vol 168-170 ◽  
pp. 1833-1836
Author(s):  
Gang Qiang Geng ◽  
Jing Tao Guo ◽  
Jun Jun Zou ◽  
Gong Xun Bian

In order to obtain super aerogels heat insulating composite materials with silane coupling agent on the in-situ surface treatment. The core-shell structure composite materials have been prepared by dispersion polymerization process of polystyrene grafted on the SiO2 particles. By TEM on these samples the impact of the system components initiator polymerization parameters and dispersion process was discussed. The results showed that the system component of the greatest impact on conversion rate is the ratio of aerogels /St ,the optimum reaction temperature is 75 °C.With organic initiator KPS as initiator after a unique ultrasound technique to obtain the core-shell composite materials structure which coating is 70%.



Author(s):  
Cihan Kaboglu

Sandwich structures are popular in applications in which the weight of the component affects the efficiency, especially in the aviation and aerospace industries. This study aims to understand the impact behaviour of sandwich structures with different core materials. Sandwich structures are manufactured with glass fibre reinforced polymer skins and balsa wood, polyethylene terephthalate (PET) and polyvinyl chloride (PVC) core through resin infusion under flexible tools. Three different core materials were tested and compared using the damaged area of the back face of the sample. The effect of the core materials on the mechanical behaviour of the structures is crucial. The results showed that the microstructure of the core materials plays an important role, because althoughthe density of balsa wood is greater than the density of PET and PVC, the structures having PVC and PET as core materials undergo less damage than those having balsa wood as a core material. Keywords: Sandwich composite, impact behaviour, core materials.



2021 ◽  
Vol 21 (3) ◽  
pp. 2179-2190
Author(s):  
Weigang Wang ◽  
Ting Lei ◽  
Andreas Zuend ◽  
Hang Su ◽  
Yafang Cheng ◽  
...  

Abstract. Aerosol mixing state regulates the interactions between water molecules and particles and thus controls aerosol activation and hygroscopic growth, which thereby influences visibility degradation, cloud formation, and its radiative forcing. There are, however, few current studies on the mixing structure effects on aerosol hygroscopicity. Here, we investigated the hygroscopicity of ammonium sulfate / phthalic acid (AS / PA) aerosol particles with different mass fractions of PA in different mixing states in terms of initial particle generation. Firstly, the effect of PA coatings on the hygroscopic behavior of the core-shell-generated mixtures of AS with PA was studied using a coating hygroscopicity tandem differential mobility analyzer (coating HTDMA). The slow increase in the hygroscopic growth factor of core-shell-generated particles is observed with increasing thickness of the coating PA prior to the deliquescence relative humidity (DRH) of AS. At relative humidity (RH) above 80 %, a decrease in the hygroscopic growth factor of particles occurs as the thickness of the PA shell increases, which indicates that the increase of PA mass fractions leads to a reduction of the overall core-shell-generated particle hygroscopicity. In addition, the use of the Zdanovskii–Stokes–Robinson (ZSR) relation leads to the underestimation of the measured growth factors of core-shell-generated particles without consideration of the morphological effect of core-shell-generated particles, especially at higher RH. Secondly, in the case of the AS / PA initially well-mixed particles, a shift of the DRH of AS (∼80 %, Tang and Munkelwitz, 1994) to lower RH is observed due to the presence of PA in the initially well-mixed particles. The predicted hygroscopic growth factor using the ZSR relation is consistent with the measured hygroscopic growth factor of the initially well-mixed particles. Moreover, we compared and discussed the influence of mixing states on the water uptake of AS / PA aerosol particles. It is found that the hygroscopic growth factor of the core-shell-generated particles is slightly higher than that of the initially well-mixed particles with the same mass fractions of PA at RH above 80 %. The observation of AS / PA particles may contribute to a growing field of knowledge regarding the influence of coating properties and mixing structure on water uptake.



2008 ◽  
Vol 33-37 ◽  
pp. 381-386
Author(s):  
M. Nizar Machmud ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto

Experimental works using a drop weight impact test method have been performed on a circular sheet specimen to evaluate and to characterize the impact resistance of the sheet-type plastic components designed for automotive wheel covers. Evaluation has been conducted for a set of engineering plastics: polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) and their blend (PC/ABS). The testing results showed that the PC/ABS blend specimens failed in brittle manner under higher impact speeds with very few of whitening zones. Secondary cracks captured perpendicular to fracture surface were also found in the mid-plane of the scattered PC/ABS blend specimens. Investigation is then focused on this blend and the testing results describe that impact resistance of the specimen made of this alternative material is determined by ABS not by PC. Combination of structures between PC and ABS through the thickness in the core due to their immiscibility was observed by scanning electron microscope (SEM) on the etched PC/ABS specimen. This latter result well correlates the results obtained from the testing. It therefore reveals that immiscibility between PC and ABS in the blend plays an important role in determining the impact resistance of the components. This paper also presents simulative results of the test obtained from a FEA work by introducing a 3D- layered finite element (FE) model of the PC/ABS specimen to take into account effect of a layer in the core on the behavior of the blend.



Sign in / Sign up

Export Citation Format

Share Document