scholarly journals Effect of MF-Coated Epoxy Resin Microcapsules on Properties of Waterborne Wood Coating on Basswood

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 785 ◽  
Author(s):  
Xiaoxing Yan ◽  
Yijuan Chang

In this paper, melamine–formaldehyde (MF) was used as the wall material, and epoxy resin was used as the core material to prepare microcapsules. The optical properties, mechanical properties and ageing resistance of waterborne topcoat were investigated by adding different mass fractions of microcapsules into the waterborne topcoat. Through scanning electron microscopy and infrared spectroscopy analysis, the prepared microcapsules of core-wall ratio of 0.50 were more uniform. It was found that when the mass fraction of microcapsules is less than 10.0% and the core–wall ratio is 0.50, the original color difference of the coating can be maintained. With the increase in microcapsule mass fraction, the gloss of the topcoat film gradually decreases. The mass fraction of the microcapsule of 4.0% with the core–wall ratio of 0.50 can maintain the original gloss of 30.0 GU. The topcoat film with the MF-coated epoxy resin microcapsules of the core–wall ratio of 0.50 has high impact resistance, adhesion and hardness. The results showed that the gloss loss and color difference of the coating with the MF-coated epoxy microcapsules were the lowest when the mass fraction of microcapsules was 4.0%, indicating that microcapsules can improve the stability of coating. These results lay a technical foundation for the development and application of high-performance wood coatings.

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 657 ◽  
Author(s):  
Xiaoxing Yan ◽  
Wenwen Peng

Microcapsules of a waterborne core material were prepared using a waterborne primer. The microcapsules of the waterborne core material were added to the waterborne primer to explore the effects of different core–shell ratios and mass fractions of the microcapsules on the property of the waterborne primer coating on the wooden surface. The results show that as the mass fraction of the microcapsules increased, the chromatic aberration increased by degrees, the glossiness decreased gradually, and the hardness increased by degrees, whilst—except for the coating with 0.50:1 microcapsules—the adhesion decreased gradually. When the mass fraction of the microcapsules increased, the impact resistance increased first and decreased later, or remained unchanged after reaching a certain value. When the mass fraction of the microcapsules increased, the elongation at the break increased first and decreased later. When the core–shell ratio was small and the mass fraction was between 5.0% and 15.0%, the coating had better liquid resistance. When the core–shell ratio was 0.67:1 and the mass fraction was 10.0%, the overall property of the coating on the Basswood was the best. The technology of microencapsulation provides a technical reference for the waterborne primer with self-repair qualities on the surface of wooden products.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1537
Author(s):  
Xiaoxing Yan ◽  
Nan Huang

The microcapsules were prepared by using melamine-formaldehyde resin as the wall material and aloin as the core material. The aloin was dissolved in ethanol and water to prepare microcapsules. The aloin powder, the aloin microcapsules prepared with ethanol as the solvent, and the aloin microcapsules prepared with water as the solvent were, respectively, added to the waterborne coating with different contents and coated on the surface of Tilia europaea. The effects of different modifiers and contents on the coating’s optical properties, mechanical properties, and antibacterial properties were explored. The results showed that the aloin microcapsules prepared with ethanol as the solvent had good morphology and comprehensive properties. When the content was 7.0%, the color difference of the waterborne coating was small, the adhesion was grade 3, the impact resistance was 12 kg·cm, and the antibacterial rate was 87.8%. In terms of antibacterial properties, the uncoated aloin powder, the coated aloin microcapsules prepared with ethanol as the solvent, and the aloin microcapsules prepared with water all have certain antibacterial properties and the antibacterial rates reached 99.2%, 97.3%, and 67.3%, respectively. This study provides a certain reference for developing antibacterial wood furniture coatings.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xue Sun ◽  
Jingcheng Su ◽  
Rui Zhang ◽  
Fangyu Fan

The double-layered microencapsulation technology has been used in many fields. In this study, the double-layered microencapsulated anthocyanin of Passiflora edulis shells (APESs) was prepared via complex coacervation using gelatin and gum Arabic as the first wall materials (single-layered microcapsules (SMs)) and using gum Arabic containing nano-SiO2 as the second wall material (double-layered microcapsules (DMs)/nano-SiO2) to enhance the stability of the core material. Properties of microcapsules were analyzed on the basis of EE, morphology, scanning electron microscopy (SEM), droplet size, moisture content, and differential scanning calorimetry (DSC). The results showed that the EE values of SMs, DMs, and DMs/nano-SiO2 were 96.12%, 97.24%, and 97.85%, respectively. DMs/nano-SiO2 had the lowest moisture content (2.17%). The average droplet size of DMs/nano-SiO2 (34.93 μm) was higher than those of SMs and DMs. DSC indicated that the melting temperature of DMs/nano-SiO2 was 73.61°C and 45.33°C higher than those of SMs and DMs, respectively. SEM demonstrated that DMs/nano-SiO2 had the smoothest surface compared with the other two kinds of microcapsules. The storage stability of APESs and their microcapsules indicated that the stability of the microcapsules was improved by adding DMs/nano-SiO2 into the wall material of microcapsules. These results indicated double-layered microcapsules containing silica nanoparticles contribute to the stability of the core material.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 72
Author(s):  
Xiaoxing Yan ◽  
Wenbo Li ◽  
Yan Han ◽  
Taiyu Yin

The melamine/rice husk powder-coated shellac microcapsules were prepared by in-situ polymerization with melamine resin mixed with rice husk powder as microcapsule wall material and shellac as microcapsule core material. The effect of the addition amount of microcapsules with different wall material ratios on the performance of wood waterborne primer coating was investigated. The results show that the most important factor affecting the performance of microcapsules is the content of rice husk powder. Through the preparation and analysis of shellac microcapsule primer coating coated with melamine/rice husk powder, when the content of microcapsule powder is 0–6%, it has little effect on the optical properties of wood waterborne primer coating, and the microcapsule with 5.5% rice husk powder has little effect on the color difference of primer coating. The coating hardness increases with the increase of rice husk powder content in wall material. When the rice husk powder content in wall material is more than 5.5%, the coating hardness reaches the best. When the content of microcapsule powder is 3.0–9.0%, the adhesion of the coating is better, and the coating with rice husk powder content of 5.5% in microcapsule wall material has better impact resistance. When the content of rice husk powder was 5.5% and the content of microcapsule powder was 6%, the elongation at break of the primer coating was the highest and the tensile resistance was the best. The composition of wood waterborne primer did not change after adding microcapsule. The water-based primer with microcapsule has better aging resistance. The water-based primer coating with rice husk powder content of 5.5% and the addition amount of 6% had the best comprehensive performance, which lays the technical reference for the toughness and self-repairing of the waterborne wood coatings.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 3124-3130 ◽  
Author(s):  
HUI CONG LIU ◽  
XIU QING XU ◽  
WEI PING LI ◽  
YAN HONG GUO ◽  
LI-QUN ZHU

The shell material of microcapsules has an important effect on the electrolytic co-deposition behavior, the release of core material and the surface performance of composite coating. This paper discussed the tensile property and the stability of three shell materials including polyvinyl alcohol (PVA), gelatin and methyl cellulose (MC). It is found that these three shell materials have good mechanical strength and flexibility which are favorable to electrolytic co-deposition and stability of microcapsules in composite coating and that MC has well permeability and porosity which has a positive effect on the release of the core material in composite coating. Moreover, the study of the thermal properties and water vapor permeability of the three shell materials showed that their permeability improved with increase of temperature and humidity. In addition, the composite copper coating containing microcapsules with PVA, gelatin or MC as shell material was prepared respectively.


2007 ◽  
Vol 342-343 ◽  
pp. 505-508
Author(s):  
Sung Won Kim ◽  
Yun Sik Nam ◽  
Yeon Jin Min ◽  
Jong Ho Kim ◽  
Kwang Meyong Kim ◽  
...  

Stability and disintegration of natural polyelectrolyte complex microspheres for protein drugs delivery have been extensively investigated because of their great influence on the drug release patterns. In this study, we tested stability of microspheres with alginate (Alg) core layered by either chitosan (Chi) or glycol chitosan (GChi) by examining release profiles of fluorophorelabeled bovine serum albumin (BSA) and lysozyme (Lys) from the microspheres. While GChi shell was disintegrated quickly, Chi-shell microspheres showed good stability in PBS. Disintegration of the coated layer induced the core material instable. The results indicated that while the charges of the shell material provided additional diffusion barrier against the protein release, the key factor to hold the proteins inside the microspheres was the integrity of the outer coating layer.


2009 ◽  
Vol 1188 ◽  
Author(s):  
Laurent Mezeix ◽  
Christophe Bouvet ◽  
Serge Crézé ◽  
Dominique Poquillon

AbstractMany different sandwich panels are used for aeronautical applications. Open and closed cell structured foam, balsa wood or honeycomb are often used as core materials. When the core material contains closed cells, water accumulation into the cell has to be taken into account. This phenomenon occurs when in service conditions lead to operate in humidity atmosphere. Then, water vapor from air naturally condenses on cold surfaces when the sandwich panel temperature decreases. This water accumulation might increase significantly the weight of the core material. Core with a ventilated structure helps to prevent this phenomenon. Periodic cellular metal (PCM) has been motivated by potential multifunctional applications that exploit their open architecture as well as their apparent superior strength and stiffness: pyramidal, lattice, Kagome truss or woven. One of the drawbacks of these materials is the expensive cost of the manufacturing. Recently, a novel type of sandwich has been developed with bonded metallic fibers as core material. This material presents attractive combination of properties like high specific stiffness, good damping capacity and energy absorption. Metal fibers bonded with a polymeric adhesive or fabricated in a mat-like form consolidated by solid state sintering. Entangled cross-linked carbon fibers have been also studied for using as core material by Laurent Mezeix. In the present study, ventilated core materials are elaborated from networks fibers. The simplicity of elaboration is one of the main advantages of this material. Multifunctional properties are given by mixing different sorts of fibers, by example adding fibers with good electrical conduction to give electrical conductivity properties. In this study network fibers as core material are elaborated using carbon fibers, glass fibers and stainless steel fibers. In aeronautical skins of sandwich panels used are often carbon/epoxy prepreg, so epoxy resin was used to cross-link fibers. The core thickness was chosen at 30 mm and fibers length was chosen at 40 mm. Entanglement, separation of filaments and cross-linking are obtained in a specific blower room. Fibers are introduced in the blower room, compressed air is applied and in same time epoxy resin is sprayed. Indeed one of the sandwich core material properties required is low density, so yarns size need to be decreased by separating filaments. Network fibers are introduced in a specific mould and then are compressed. The density obtained before epoxy spaying is 150 kg/m3. Finally samples are polymerized at 80°C for 2 hours in a furnace under laboratory air. Compressive behavior is study to determinate the influence of fibers natures and the effect of cross-linking. Reproducibility is also checked.


2020 ◽  
Vol 499 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Daria Kubyshkina ◽  
Aline A Vidotto ◽  
Luca Fossati ◽  
Eoin Farrell

ABSTRACT The long-term evolution of hydrogen-dominated atmospheres of sub-Neptune-like planets is mostly controlled to by two factors: a slow dissipation of the gravitational energy acquired at the formation (known as thermal evolution) and atmospheric mass-loss. Here, we use mesa to self-consistently couple the thermal evolution model of lower atmospheres with a realistic hydrodynamical atmospheric evaporation prescription. To outline the main features of such coupling, we simulate planets with a range of core masses (5–20 M⊕) and initial atmospheric mass fractions (0.5–30 per cent), orbiting a solar-like star at 0.1 au. In addition to our computed evolutionary tracks, we also study the stability of planetary atmospheres, showing that the atmospheres of light planets can be completely removed within 1 Gyr and that compact atmospheres have a better survival rate. From a detailed comparison between our results and the output of the previous-generation models, we show that coupling between thermal evolution and atmospheric evaporation considerably affects the thermal state of atmospheres for low-mass planets and, consequently, changes the relationship between atmospheric mass fraction and planetary parameters. We, therefore, conclude that self-consistent consideration of the thermal evolution and atmospheric evaporation is of crucial importance for evolutionary modelling and a better characterization of planetary atmospheres. From our simulations, we derive an analytical expression between planetary radius and atmospheric mass fraction at different ages. In particular, we find that, for a given observed planetary radius, the predicted atmospheric mass fraction changes as age0.11.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 778 ◽  
Author(s):  
Yijuan Chang ◽  
Xiaoxing Yan

A self-repairing microcapsule was prepared by emulsion polymerization using melamine formaldehyde resin (MF) as wall material, and a mixture of shellac solution and water-based coating as core material. The orthogonal experiment was carried out through five factors and four levels. The effects of Wcore:Wwall, Wemulsifier:Wcore, stirring rate, Wshellac:Wcoating, Wemulsifier solution:Wcore on the output and coverage rate of microcapsules were studied. The stirring rate has a great influence on the preparation process of the MF-coated shellac water-based microcapsules. When the Wcore:Wwall is 0.8:1, Wemulsifier:Wcore is 3:100, stirring rate is 600 rpm, Wshellac:Wcoating is 1:1, Wemulsifier solution:Wcore is 9:1, the prepared microcapsules have the best shape and size. With the increase in concentration of microcapsules, the color difference and gloss of paint film decreased gradually. The tensile strength, scanning electron microscopy (SEM), infrared spectroscopy and repair effects of the paint film were analyzed. When the concentration of microcapsules was 5.0–10.0%, the comprehensive performance of the paint film was better, providing a technical reference for the self-repairing coatings.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2366 ◽  
Author(s):  
Xiaoxing Yan ◽  
Yu Tao ◽  
Xingyu Qian

Microcapsules were prepared by in situ polymerization with urea formaldehyde resin as the wall material and Dulux waterborne acrylic acid as the core material. The effects of the core–wall ratio, water bath temperature and depositing time on the morphology, particle size, yield and encapsulation ratio of microcapsules were investigated by orthogonal experiment of three factors and two levels. The results showed that the core–wall ratio had the greatest influence on the performance of microcapsules. When the core–wall ratio was 0.58:1, the water bath temperature was 70 °C, and the depositing time was 5 d, the microcapsule performance was the best. With the increase in depositing time, the yield of microcapsule particles increased gradually, and the microcapsules appeared to show an adhesive phenomenon. However, the long-term depositing time did not lead to complete deposition and agglomeration of microcapsules. When 10.0% concentration of the waterborne acrylic microcapsules with 0.58:1 of core–wall ratio was added to the coatings, the mechanical and optical properties of the coatings did not decrease significantly, but the elongation at break increased significantly. Therefore, this study offers a new prospect for using waterborne acrylic microcapsules to improve the toughness of waterborne paint film which can be cured at room temperature on a wood surface.


Sign in / Sign up

Export Citation Format

Share Document