scholarly journals Chitosan-Phenylalanine Nanoparticles (Cs-Phe Nps) Extend the Postharvest Life of Persimmon (Diospyros kaki) Fruits under Chilling Stress

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 819
Author(s):  
Fahimeh Nasr ◽  
Mirian Pateiro ◽  
Vali Rabiei ◽  
Farhang Razavi ◽  
Steven Formaneck ◽  
...  

There are high levels of damage imposed on persimmon fruit postharvest, especially after storing it in cold storage, which causes chilling injury (CI). To reduce this stress on the fruit, the conventional way is to use chemical treatments. Since there is a limitation in the use of chemical materials, it is necessary to apply non-harmful treatments to decrease chilling injury and maintain the quality of persimmon in cold storage. The aim of this study is to investigate the effects of chitosan-loaded phenylalanine nanoparticles (Cs-Phe NPs) (2.5 and 5 mM) on physiochemical and quality factors of persimmon (Diospyros kaki) during 45 days of storage at 4 °C (38 °F) and evaluate the impact of Cs-Phe NPs on the preserving quality in order to reduce the chilling injury of this fruit. The experiment was conducted using a completely randomized design with three replications. Treatments were applied at 15, 30, and 45 days after storage at 4 °C with ≥90% relative humidity. The size of Cs-Phe NPs was less than 100 nm, approximately. The results showed that application of 5 mM of Cs-Phe NPs delayed the negative effects of chilling stress and enhanced antioxidant capacity, firmness, and total soluble solids of persimmon fruit. Lower H2O2 and malonaldehyde (MDA) accumulation along with higher soluble tannin and total carotenoid accumulation in persimmon fruit treated with 5 mM Cs-Phe NPs was also observed. Fruit coated using Cs-Phe NPs in both concentrations (2.5 and 5 mM) showed the highest antioxidant enzyme activity for superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) and the lowest for polyphenol oxidase (PPO) and chilling injury during storage. According to our results, 5 mM of Cs-Phe NPs could be considered as the best treatment under chilling-stress conditions.

2004 ◽  
Vol 10 (3) ◽  
pp. 179-185 ◽  
Author(s):  
L. Arnal ◽  
M. A. Del RÌo

Cold storage and removal of astringency effects on quality of persimmon fruit cv. Rojo brillante were determined. Persimmon fruit were stored at 1, 8, 11 and 15 ºC (85–90% RH) and after 6, 13, 20, 27 and 34 days of storage at these temperatures, astringency was removed. Fruit quality was assessed after the removal of the astringency and after a simulated retail storage period of 6 days at 20 ºC. Storage temperature affected fruit firmness, colour, appearance, acetaldehyde and ethanol production but not total soluble solids or flavour. Fruit stored at 15 ºC followed by 6 days at 20 ºC maintained the best commercial firmness and the lowest ethanol and acetaldehyde production. Chilling injury was observed after storage at 20 ºC on those fruits previously stored at 1 or 8 ºC.


2016 ◽  
Vol 29 (3) ◽  
pp. 629-641 ◽  
Author(s):  
JOÃO ALISON ALVES OLIVEIRA ◽  
LUIZ CARLOS CHAMHUM SALOMÃO ◽  
DALMO LOPES DE SIQUEIRA ◽  
PAULO ROBERTO CECON

ABSTRACT The objective of this work was to evaluate the tolerance of fruits of different banana cultivars to low temperature storages. Fruits of the cultivars Nanicão (AAA), Prata (AAB), Vitória (AAAB), Maçã (AAB) and Caipira (AAA) were used. Clusters of three fruits were kept in cold storage for 7, 14 and 21 days, with average temperature of 10.53±0.37°C and relative humidity of 85%. Subsequently, the clusters were transferred to temperatures of 22±0.39°C and evaluated for 16 days. The fruits of all cultivars remained green after 21 days of storage at 10.53±0.37°C. Fruits of the cultivar Nanicão did not completely ripened after transferred to the 22°C storage, when stored for 7 days at low temperature. These fruits were firmer, with green peel and low soluble solids and titratable acidity. The fruits of all cultivars complete the ripening when transferred to room temperature after 21 days of cold storage. Chilling injuries increased with cold storage time in all cultivars. The cultivars Nanicão, Caipira and Maçã had more symptoms of chilling injury, while Prata and Vitória were more tolerant to the cold storage (10.53°C) for up to 21 days, showing normal ripening after transferred to the 22±0.39°C storage.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tina Smrke ◽  
Martina Persic ◽  
Robert Veberic ◽  
Helena Sircelj ◽  
Jerneja Jakopic

AbstractThe purpose of this work was to investigate how to overcome the negative effect of anti-hail netting on the photosynthetic photon flux density (PPFD) in persimmon trees and persimmon fruit colour, flesh firmness, total soluble solids (TSS) and individual carotenoid and phenolic compound contents (determined via HPLC-MS) under a hail net with the use of reflective foil. Reflective foil increased the PPFD on the lower side of the fruits, while there was no significant difference on the upper side compared to those of the control group. The CIE colour parameters a* and h° indicated more intense red colouration of the fruits in the foil treatment than those in the control. Among carotenoids, the content of β-carotene increased, and the content of zeaxanthin decreased in fruits in the reflective foil treatment group, while the content of other carotenoids was not affected by the reflective foil. Among individual phenolic compounds in the persimmon peel, greater light intensity significantly influenced all three phenolic compound subgroups: phenolic acids, flavan-3-ols and flavonols. The content of gallic acid in the persimmon flesh increased the most, while other phenolics did not show any significant differences in concentrations between the foil and control groups. This study is the first to examine the influence of reflective foil on bioactive compounds in persimmon fruit. The use of reflective foil in persimmon orchards improves persimmon fruit colour and selected bioactive compound contents.


2020 ◽  
Vol 41 (6supl2) ◽  
pp. 3457-3465
Author(s):  
Ronan Carlos Colombo ◽  
◽  
Deived Uilian de Carvalho ◽  
Maria Aparecida da Cruz ◽  
Ciro Hideki Sumida ◽  
...  

The demand for high-quality nutritional products has increased fruit consumption, as grapes, for this reason postharvest techniques are required to prevent losses, to preserve quality, to extend shelf life, and to attend to consumer needs. In this way, the objective of this study was to evaluate strategies to control gray mold caused by Botrytis cinerea in ‘BRS Nubia’ grapes during cold storage and shelf life periods. Grape bunches were harvested from a commercial vineyard in Marialva, Parana, Brazil. Grapes were subjected to the following treatments: cold storage at 2 ºC (control), cold storage at 2 ºC with SO2-generating pads, cold storage at 2 ºC and inoculated with B. cinerea suspension, and cold storage at 2 ºC with SO2-generating pads and inoculated with B. cinerea suspension. The experiment was conducted in a complete randomized design with five replications per treatment using four bunches per experimental unit. A factorial arrangement (absence/presence of SO2 pads × absence/presence of Botrytis inoculation) was applied. At the end of 30 days of cold storage and 7 days of shelf life (22 ºC), gray mold incidence, shattered berries, and physicochemical parameters were evaluated. The gray mold incidence on ‘BRS Nubia’ grapes decreased when SO2-generating pads were used during cold storage. Berry weight loss was greater in the treatments without SO2-generating pads after 30 days of cold storage followed by 7 days of shelf life. Berry firmness, soluble solids content (SS), total acidity (TA), SS/TA ratio, and anthocyanins concentration were not negatively affected by SO2-generating pad treatments. However, a slight increase in the shattered berries percentage was recorded for the SO2-generating pad treatments. No significant quality loss of ‘BRS Nubia’ grape was evident after 30 days of cold storage followed by 7 days of exposure at room temperature. In this context, SO2-generating pads can be used to control the gray mold incidence on ‘BRS Nubia’ table grapes during cold storage.


HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 125-129 ◽  
Author(s):  
Maria E. Monzon ◽  
Bill Biasi ◽  
Elizabeth J. Mitcham ◽  
Shaojin Wang ◽  
Juming Tang ◽  
...  

The external and internal quality of ‘Fuyu’ persimmon fruit (Diospyros kaki L.) was evaluated after heating with radiofrequency (RF) energy to 48, 50, or 52 °C, holding at the target temperatures for durations ranging from 0.5 to 18 minutes, hydrocooling, and ripening at 20 °C for 12 days. These treatment conditions were identified for control of third instar Mexican fruit fly larvae (Anastrepha ludens). The treatments had no commercially significant effect on firmness, soluble solids content, titratable acidity, or weight loss of the fruit. RF-treated persimmon fruit attained a deeper orange–red skin color than control fruit. There was a greater incidence of slight to moderate flesh browning in fruit heated to 50 and 52 °C as compared with 48 °C. Calyx browning increased slightly in all RF-treated fruit and was the highest in the longer treatments at each temperature. Heating persimmon fruit with RF to 48 °C and then holding for 6 or 12 minutes showed the least damage, and the latter treatment was longer than should be required for a quarantine treatment against the third instar Mexican fruit fly. Holding persimmons for 6.6 minutes at 48 °C should provide control of the Mexican fruit fly and maintain fruit quality. Confirmation tests with infested fruit should be conducted.


HortScience ◽  
2009 ◽  
Vol 44 (6) ◽  
pp. 1637-1640 ◽  
Author(s):  
Valeria Sigal Escalada ◽  
Douglas D. Archbold

The impact of heat plus aminoethoxyvinylglycine (AVG) treatments alone or in combination on ripening of four apple cultivars has been studied. A solution of AVG was applied to ‘Lodi’, ‘Senshu’, ‘Redchief Delicious’, and ‘Red Fuji’ apple trees ≈4 weeks before normal harvest at 124 g·ha−1 a.i. After harvest, half of each group of control and AVG-treated fruit was heated at 38 °C for 4 days and then stored at 4 °C for 30 days. After cold storage, AVG and heat individually suppressed ethylene production of ‘Senshu’ and ‘Redchief Delicious’ but not of ‘Lodi’ or ‘Red Fuji’. The combination of AVG with heat treatment reduced ethylene production the most consistently in each cultivar except ‘Lodi’, suggesting some additive effect of the treatments. The respiration rate after cold storage was not consistently affected by any treatment. AVG alone and with heat maintained firmness of ‘Lodi’, AVG plus heat maintained it in ‘Senshu’, but neither ‘Redchief Delicious’ nor ‘Red Fuji’ firmness responded to the treatments. AVG-treated ‘Lodi’ and ’Redchief Delicious’ fruit, heated fruit of all cultivars, and AVG plus heat in all had lower titratable acidity than controls after cold storage. Although there were no effects of any treatment on fruit soluble solids concentration, the combined treatment increased the soluble solids:titratable acidity ratio of all cultivars, although heat or AVG alone had no consistent effects. Total ester production by ‘Redchief Delicious’ peel tissue after cold storage was reduced 44% by AVG and 70% or more by heat and AVG plus heat. There were no differences in peel alcohol acyltransferase activity among the treatments, supporting the hypothesis that substrate availability was the limiting factor for ester synthesis in treated fruit. Overall, heat plus AVG treatment did not provide any advantage over each alone for maintaining apple fruit quality during short-term cold storage.


2010 ◽  
Vol 16 (2) ◽  
pp. 159-167 ◽  
Author(s):  
B. Orihuel-Iranzo ◽  
M. Miranda ◽  
L. Zacarías ◽  
M.T. Lafuente

The effects of storage temperature, inhibition of ethylene action by treatment with 1-methylcyclopropene (1-MCP) and ultra low oxygen (ULO) atmosphere on chilling injury (CI), fruit firmness and ethylene production in the astringent ‘Rojo Brillante’ persimmon fruit were investigated. CI symptoms were manifested as a very dramatic loss of firmness after fruit transfer from cold storage to shelf-life conditions (18 °C). During cold storage, fruit softening appeared more rapidly in fruit stored at the intermediate temperature of 10 °C than at 1°C or 14.5 °C. Ethylene production increased with storage time at the chilling temperature (1 °C) but a sharp increase took place upon fruit transfer from 1 °C to ambient temperature. This ethylene increase was accompanied by a loss of fruit firmness associated with chilling damage development. A pre-treatment with the competitive inhibitor of ethylene action 1-MCP, at 1 μL/L, reduced firmness loss and mitigated CI damage but considerably increased ethylene production in fruit transferred to shelf-life conditions after a prolonged cold storage period. Collectively, these results suggest a role of ethylene in the reduction of flesh firmness and consequently in the induction of CI in persimmon fruit. Moreover, ethylene exerts a negative feedback regulation of cold-induced ethylene biosynthesis. Storage of ‘Rojo Brillante’ persimmon fruit under ULO (1.3—1.8% O2, v/v) atmosphere did not affect the incidence of CI but reduced fruit astringency, suggesting that ULO may be an alternative postharvest storage system for ‘Rojo Brillante’ persimmon fruit.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 445E-446
Author(s):  
Ehiorobo Izekor ◽  
J.O. Garner ◽  
F.B. Matta

A procedure to determined selection of sweetpotato (Ipomoea batatas L. Lam.) genotypes tolerant to chilling injury was initiated by crossing two resistance lines and two susceptible lines. Experimental design on the F1 progeny was a completely randomized design (CRD) with two groups, tolerant and sensitive genotypes, and 90 lines in each group. Four plants per lines were selected and each plant represented a replication. The rating of plants according to the degree of chilling injury was recorded at 36 h after chilling temperature of 5 °C with 85% relative humidity. Significance of the analysis was based on the number of plants tolerant to chilling injury from both the resistant and the sensitive groups. Results from the statistical analysis based on visual rating of the F1 progeny plants for 36 h, indicated that higher populations of resistant plants could be produced when two resistant lines were crossed in a control pollination process. Evaluations to be continued are chlorophyll fluorescence, leakage of cell content, structural changes of the cell, and peroxidase content, before and after chilling stress. These assays will be used to further determine the similarities among the chilling-tolerant genotypes. Findings will aid in elucidating mechanism of chilling injury in fruit and vegetables.


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1167c-1167
Author(s):  
T. Wang ◽  
A. R. Gonzalez ◽  
E. E. Gbur ◽  
J. M. Aselage

Babygold 5 (BG5) and Redhaven (RDH) peaches at maturity 4 were held at 2.3°C for 0, 2 and 4 weeks. After each cold storage treatment half of the fruit sample was evaluated; the other half was ripened for 8 days at 21°C and respiration was measured daily. The evaluations on both samples were for malic, citric and quinic acids, titratable acidity (TA), soluble solids (SS) and flesh firmness. Malic acid in ripened BG5 and RDH Fruits increased relative to their unripened counterpart over the cold storage time; citric acid increased in BG5, decreased in RDH; quinic acid decreased in both cultivars; TA increased; SS decreased in BG5, did not change in RDH; flesh firmness increased in BG5, did not change in RDH. Respiratory rate increased with cold storge time in both cultivars. Overall, BG5 showed more susceptibility to chilling than RDH.


Sign in / Sign up

Export Citation Format

Share Document