scholarly journals Influence of Carbon Nanowalls Interlayer on Copper Deposition

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1395
Author(s):  
Cristiana-Alexandra Danes ◽  
Cristina Dumitriu ◽  
Sorin Vizireanu ◽  
Bogdan Bita ◽  
Ioana-Maria Nicola ◽  
...  

This research deals with the deposition of copper on a steel substrate. Two different methods were investigated: electrochemical and magnetron sputtering. The deposition parameters were optimized to obtain a coating layer with uniform granular structure and good adhesion to the substrate. As a novelty, carbon nanowalls (CNW) were used as reinforcement in copper coatings on the steel surface. The morphology of the coatings, adhesion and Vickers microhardness were performed to emphasize the CNW influence on the coating properties. Open circuit potential and Tafel analysis were used for electrochemical characterization. These kinds of CNW-copper composite with improved hardness and adhesion and surface electrical resistance around 1 Ω·cm could have miscellaneous applications in different domains such as aerospace, electronics, automotive and power-generation.

2020 ◽  
Author(s):  
Junhua Dong

<p>In the multi-barrier system of HLW repository, overpack is the first barrier to isolate high-level radioactive nuclides from biosphere, and Low carbon steel has been considered to be a promising candidate material for manufacturing the oberpack due to its good mechanical performance and workability and weldability. However, during thousands of years of geological disposal, the corrosion resistance of low carbon steel and its corrosion evolution behavior are the first element that must be fully understood, because it determines the life cycle of the artificial barrier.</p><p>Conventional studies had suggested that the corrosion of low carbon steel under the deep geological environment was driven by hydrogen evolution reaction (HER) based on that the dissolved oxygen was completely depleted during the long term disposal. However, the residual oxygen content is a critical factor to determine the corrosion mode of cathodic reduction reaction. Thermodynamics data indicated that the initial ferrous corrosion products formed in the deaerated bicarbonate solution can be chemically oxidized into ferric substance by the trace content of dissolved oxygen, and the accumulated FeOOH as a cathodic depolarizer significantly increased the open circuit potential and enhanced the corrosion rate of the low carbon steel. Moreover, chloride and sulfate in the simulated groundwater can reduce the increase of open circuit potential but it still promotes the corrosion of the low carbon steel. As the environments contained aggressive anions and high concentration of dissolved oxygen, low carbon steel was prone to suffer from the localized corrosion and the corrosion rate was obviously increased. By alloying with some contents of Ni and Cu, the corrosion rate of low alloy steel was decreased by an order of magnitude and it was less prone to suffer from the localized corrosion.</p><p>Under the conditions of simulated groundwater with different content of GMZ bentonite,the bentonite colloidal particle layer attached to the surface of low carbon steel showed blocking effect on resisting oxygen diffusion to the steel substrate, which consequently decrease the further oxidation of ferrous to ferric substances and the corrosion rate of low carbon steel. However, the barrier performance of bentonite colloids would be deteriorated due to their coagulation caused by the ferrous ions dissolved from the steel substrate. High content of bentonite was beneficial to maintain and to prolong the stabilization of the barrier system. An equivalent circuit model which correlates with the interfacial structure between electrode substrate and rust and bentonite layer was proposed. The fitting results showed a very good match between the model and experimental data, and the evolution of the results was also in agreement with real changes.</p>


2001 ◽  
Vol 668 ◽  
Author(s):  
A.M. Chaparro ◽  
M.T. Gutiérrez ◽  
J. Herrero ◽  
J. Klaer

ABSTRACTThin film solar cells of CuInS2/Zn(Se,O)/ZnO configuration have been studied as a function of the Zn(Se,O) buffer layer deposition parameters. Deposition of the buffer films was carried out by the chemical bath deposition (CBD) method, at different bath temperatures and compositions, and followed in situ with a quartz crystal microbalance. The CBD conditions were chosen to grow Zn(Se,O) buffer layers under different kinetic regimes but maintaining the same buffer thickness. The cells have been characterised with current-voltage and quantum efficiency measurements. Light soaking effects and medium term stability have been checked. It is found that Zn(Se,O) grown under predominant electroless kinetics gives rise to buffer films richer in oxygen, which allow for higher fill factors, higher efficiencies (around 10%) and stability of the cells. These cells show however lower open circuit potential. On the other hand, Zn(Se,O) buffers grown under chemical regime become richer in selenium, which gives rise to cells with higher open circuit potential, but lower fill factor, conversion efficiency and stability. Light soaking effects are also more important with the chemically grown buffers.


2011 ◽  
Vol 409 ◽  
pp. 257-262 ◽  
Author(s):  
Emilie Bousquet ◽  
Angéline Poulon-Quintin ◽  
Olivier Devos ◽  
Monique Puiggali ◽  
Marie Touzet

The FSW weld consists of three distinct microstructural zones. The microstructure inside each zone is directly impacted by the FSW process parameters. The aim of this article is to correlate microstructure, microhardness and corrosion sensitivity of a AA-2024-T3 FSW joint for one processing parameter set. A microstructural analysis has been conducted in each weld zone by the combination of TEM observations, chemical and DSC analysis. Moreover, a small electrochemical cell was used to estimate the corrosion sensitivity of the distinct zones by localized open circuit potential measurements all along the weld. Mechanical properties were evaluated using Vickers microhardness measurements. The results show a direct correlation between mechanical property evolution, local corrosion process involved and microstructure modification.


2000 ◽  
Vol 65 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Tomáš Loučka

The aim of this research was to study the oxidation and reduction of the adsorbed thiosulfate on the platinum electrode in a slightly alkaline medium. The adsorption was performed at the open circuit conditions. The reduction of the adsorbed layer in the hydrogen region is slower in a slightly alkaline medium than in acid. The mechanism of reduction and oxidation of adsorbed molecules is probably the same. The nonstationary currents measured in presence of thiosulfates showed that the change in the oxidation number does not take place during the adsorption in the double layer region. In the hydrogen region, thiosulfate replaces the adsorbed hydrogen while beeing reduced. Nonstationary currents at higher concentrations of thiosulfate indicate the presence of more layers on the electrode. Upon reaching higher concentrations of thiosulfate the oxidation reaction takes place between thiosulfate in solution and adsorbed product of its reduction. The open circuit potential of the platinum electrode measured in a thiosulfate solution was 0.780 and 0.783 V against the hydrogen electrode in the same solution.


1970 ◽  
Vol 25 ◽  
pp. 75-82
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

The synergistic effect of the simultaneous additions of tungsten and zirconium in thesputter-deposited amorphous or nanocrystalline Zr-(12-21)Cr-W alloys is studied in 0.5 MNaCl solution open to air at 25°C using corrosion tests and open circuit potentialmeasurements. Corrosion rates of the sputter-deposited Zr-(12-21)Cr-W alloys containing10-80 at % tungsten (that is, 0.95-1.85 x 10-2 mm.y-1) are more than one order of magnitudelower than that of the sputter-deposited tungsten and even lower than those of zirconium aswell as chromium in 0.5 M NaCl solution. The addition of 8-73 at % zirconium content inthe sputter-deposited binary W-(12-21)Cr alloys seems to be more effective to improve thecorrosion-resistant properties of the sputter-deposited ternary Zr-Cr-W alloys containing12-21 at % chromium in 0.5 M NaCl solution. The sputter-deposited Zr-(17-21)Cr-W alloyscontaining an adequate amounts of zirconium metal showed the more stable passivity andshowed higher corrosion resistance than those of alloy-constituting elements in 0.5 M NaClsolution open to air at 25°C.Keywords: Zr-(12-21)Cr-W alloys, sputter deposition, corrosion test, open circuit potential,0.5 M NaCl.DOI:  10.3126/jncs.v25i0.3305Journal of Nepal Chemical Society Volume 25, 2010 pp 75-82


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 744
Author(s):  
Ameeq Farooq ◽  
Umer Masood Chaudry ◽  
Ahsan Saleem ◽  
Kashif Mairaj Deen ◽  
Kotiba Hamad ◽  
...  

To protect steel structures, zinc coatings are mostly used as a sacrificial barrier. This research aims to estimate the dissolution tendency of the electroplated and zinc-rich cold galvanized (ZRCG) coatings of a controlled thickness (35 ± 1 μm) applied via brush and dip coating methods on the mild steel. To assess the corrosion behavior of these coated samples in 3.5% NaCl and 10% NaCl containing soil solutions, open circuit potential (OCP), cyclic polarization (CP), and electrochemical impedance spectroscopy (EIS) tests were performed. The more negative OCP and appreciably large corrosion rate of the electroplated and ZRCG coated samples in 3.5% NaCl solution highlighted the preferential dissolution of Zn coatings. However, in saline soil solution, the relatively positive OCP (>−850 mV vs. Cu/CuSO4) and lower corrosion rate of the electroplated and ZRCG coatings compared to the uncoated steel sample indicated their incapacity to protect the steel substrate. The CP scans of the zinc electroplated samples showed a positive hysteresis loop after 24 h of exposure in 3.5% NaCl and saline soil solutions attributing to the localized dissolution of the coating. Similarly, the appreciable decrease in the charge transfer resistance of the electroplated samples after 24 h of exposure corresponded to their accelerated dissolution. Compared to the localized dissolution of the electroplated and brush-coated samples, the dip-coated ZRCG samples exhibited uniform dissolution during the extended exposure (500 h) salt spray test.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Toshiro Yamanaka ◽  
Fumihito Arai

AbstractFor future medical microrobotics, we have proposed the concept of the electroosmotic self-propulsive microswimmer powered by biofuel cell. According to the derived theoretical model, its self-propulsion velocity is inversely proportional to the length of the microswimmer, while it is proportional to the open circuit potential generated by the biofuel cell which does not depend on its size. Therefore, under conditions where those mechanisms work, it can be expected that the smaller its microswimmer size, the faster its self-propulsion velocity. Because of its remarkable feature, this concept is considered to be suitable as propulsion mechanisms for future medical microrobots to move inside the human body through the vascular system, including capillaries. We have already proved the mechanisms by observing the several 10 μm/s velocity of 100 μm prototypes fabricated by the optical photolithography using several photomasks and alignment steps. However, the standard photolithography was not suitable for further miniaturization of prototypes due to its insufficient resolution. In this research, we adopted femtosecond-laser 3D microlithography for multi-materials composing of the conductive polymer composites and nonconductive polymer composite and succeeded in fabricating 10 μm prototypes. Then we demonstrated more than 100 μm/s velocity of the prototype experimentally and proved its validity of the smaller and faster feature.


2019 ◽  
Vol 11 (20) ◽  
pp. 19-28 ◽  
Author(s):  
Mikhail M. Goldin ◽  
Gary J. Blanchard ◽  
Alexander G. Volkov ◽  
Mogely S. Khubutiya ◽  
Vladimir A. Kolesnikov ◽  
...  

2014 ◽  
Vol 783-786 ◽  
pp. 2537-2540 ◽  
Author(s):  
Satoshi Sunada ◽  
Norio Nunomura ◽  
Sayaka Hirata ◽  
Naoki Nagase

Since Fe-Cu-C sintered steels are easily rusted, they are coated with rust preventive oils. High viscosity of those rust preventive oils decrease workability, and low viscosity deteriorates rust preventive performance. Therefore, it is necessary to develop new rust preventive oils with contradictory properties of low viscosity and superior rust prevention. However, precise methodology to evaluate rust prevention ability has not been established. In this study, we developed new technique to quantitatively evaluate rust prevention ability by measuring the open circuit potential through thin corrosive solution on Fe-Cu-C sintered steels coated with a rust preventive oils. As a result, the ability for rust prevention can be measured quantitatively, and it decreases slowly over time, with repeating destruction and restoration. Furthermore, it was found that the deteriorating processes of rust prevention ability for rust prevention oils are composed of three characteristics steps respectively. That is, in the first step the great open circuit potential changes from 0V to-0.3V with repetition were observed where the excellent rust prevention ability was kept, in the second step it decreases slowly from-0.1V to-0.4V with oscillation of the small potential changes where the gradual decrease of rust prevention ability was recognized and in the third step it decreases monotonously in the lower potential than-0.4V where the rust was observed because of the remarkable deteriorating of the rust prevention ability.


2008 ◽  
Vol 38 ◽  
pp. 238-247
Author(s):  
A.D. Davydov ◽  
V.S. Shaldaev

The initiation and development of pitting corrosion of steel 20Cr13 in the NaCl solutions with various concentrations, temperatures, and pH values are studied under the potentiostatic conditions and at the free-corrosion potential. The pitting and repassivation potentials are determined using the method of cycling voltammetry. In spite of the fact that thus determined pitting potential is more positive than the corrosion potential (the open-circuit potential Eo.c.), the long-term experiments, which were performed at the free-corrosion potential, showed that pitting corrosion takes place without imposing a potential using an external power source. It is concluded that the probability of pitting corrosion of steel should be determined by comparing the corrosion potential (the open-circuit potential) with the repassivation potential Erp. Steel 20Cr13 is prone to the pitting corrosion, because Erp is more negative than Eo.c.. In the potentiostatic experiments, the variation of the depth and diameter of pits and their number with the time and the effect of temperature and electrode rotation on the pit propagation are studied. The results, which were obtained at the free-corrosion potential, are much less reproducible. In this case, in contrast to the potentiostatic conditions, the pit depth increased only slightly and the pit width increased to a larger extent. The effect of concentration, pH value, and temperature of NaCl solutions on the pit propagation is considered. It is concluded that the data on the development of pitting corrosion under the potentiostatic conditions can be hardly extended to the conditions of free corrosion potential.


Sign in / Sign up

Export Citation Format

Share Document