scholarly journals Characterization of Ceramics Coatings Processed by Sol-Gel for Cutting Tools

Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 755 ◽  
Author(s):  
Bruna Aparecida Rezende ◽  
Anderson Júnior dos Santos ◽  
Marcelo Araújo Câmara ◽  
Denilson José do Carmo ◽  
Manuel Houmard ◽  
...  

In order to obtain better cutting tool performance, the coatings appear as an alternative in the machining process. The goal of the coating is to improve tribological conditions in the chip-tool and tool-workpiece interfaces. On the other hand, the use of coated tools decreases the wear of the tools. This study discusses the ceramic coatings characterization deposited in WC tools. The Al2O3 and TiO2 films present properties such as thermal stability, chemical inertia, high hardness, and good mechanical properties. These coatings were prepared by sol-gel technology. The results indicated that the multilayer coating presents better adhesion on the substrate. Moreover, lower coefficients of friction were found for the coated tools. The analysis of variance (ANOVA) was used to evaluate the influence of the cutting parameters and tool coating on the cutting force. The lower cutting force was obtained using the multilayer-coated tool. Thus, the sol-gel method appears as a novel technique to deposit coating in the WC tools to improve their performance.

2011 ◽  
Vol 223 ◽  
pp. 350-358
Author(s):  
Ivandro Bonetti ◽  
Valter Vander Oliveira ◽  
Adriano Fagali Souza

Nowadays there has been noticeable an expressive technological development in the cutting process to machine moulds and dies, through applying new materials, cutting tools and machining strategies. The rough operations depict an important portion in the machining time of these pieces. In front of this scenario, a new milling rough operation in the tool’s axial direction represents a possibility to optimize this machining process so as decreasing the machining time and increasing the material removes rates. A few scientific studies have been carrying out at this thematic, limited to a technical-commercial researches. Therefore this work contributes with the knowledge in this machining process through an experimental trial analyses. In special it studies the cut direction effects during climb and conventional milling in these operations. The result quantifies the cutting parameters influence at the cutting force and error form.


2014 ◽  
Vol 556-562 ◽  
pp. 498-501
Author(s):  
Xiao Jing Li ◽  
Yan Hui Hu ◽  
Di Wang ◽  
Dong Man Yu

Metal cutting processing is the most fundamental, most widely and the most important processing in industrial production. Because the development of mechanical manufacturing level plays a very important role in the coating technology material machining process. A coated carbide cutting tool with its high hardness and high wear resistance, good chemical stability and extensive compatibility characteristics, is widely applied in the metal cutting processing field. The author mainly studies the cutting force contrast between coated carbide cutting tools and not coated ones. Cutting tests have testified that if PVD technology applied on cutting, the cutting force of hard alloy cutter will alter with the change of feeds (f), depth of cutting (ap) and cutting velocity (v). The experiment suggests that the size of three-way cutting force of either the brand ZP25 hard alloy cutter or the carbide cutter by employing matrix ZP25 hard alloy cutter to respectively using PVD technology coat TiN or TiCN coating is successively FZP25>FTiCN>FTiN. The main reason for this is that the difference of frictional factor of the three kinds of cutter material and the workpiece material.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1783
Author(s):  
Hamza A. Al-Tameemi ◽  
Thamir Al-Dulaimi ◽  
Michael Oluwatobiloba Awe ◽  
Shubham Sharma ◽  
Danil Yurievich Pimenov ◽  
...  

Aluminum alloys are soft and have low melting temperatures; therefore, machining them often results in cut material fusing to the cutting tool due to heat and friction, and thus lowering the hole quality. A good practice is to use coated cutting tools to overcome such issues and maintain good hole quality. Therefore, the current study investigates the effect of cutting parameters (spindle speed and feed rate) and three types of cutting-tool coating (TiN/TiAlN, TiAlN, and TiN) on the surface finish, form, and dimensional tolerances of holes drilled in Al6061-T651 alloy. The study employed statistical design of experiments and ANOVA (analysis of variance) to evaluate the contribution of each of the input parameters on the measured hole-quality outputs (surface-roughness metrics Ra and Rz, hole size, circularity, perpendicularity, and cylindricity). The highest surface roughness occurred when using TiN-coated tools. All holes in this study were oversized regardless of the tool coating or cutting parameters used. TiN tools, which have a lower coating hardness, gave lower hole circularity at the entry and higher cylindricity, while TiN/TiAlN and TiAlN seemed to be more effective in reducing hole particularity when drilling at higher spindle speeds. Finally, optical microscopes revealed that a built-up edge and adhesions were most likely to form on TiN-coated tools due to TiN’s chemical affinity and low oxidation temperature compared to the TiN/TiAlN and TiAlN coatings.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 854
Author(s):  
Muhammad Aamir ◽  
Khaled Giasin ◽  
Majid Tolouei-Rad ◽  
Israr Ud Din ◽  
Muhammad Imran Hanif ◽  
...  

Drilling is an important machining process in various manufacturing industries. High-quality holes are possible with the proper selection of tools and cutting parameters. This study investigates the effect of spindle speed, feed rate, and drill diameter on the generated thrust force, the formation of chips, post-machining tool condition, and hole quality. The hole surface defects and the top and bottom edge conditions were also investigated using scan electron microscopy. The drilling tests were carried out on AA2024-T3 alloy under a dry drilling environment using 6 and 10 mm uncoated carbide tools. Analysis of Variance was employed to further evaluate the influence of the input parameters on the analysed outputs. The results show that the thrust force was highly influenced by feed rate and drill size. The high spindle speed resulted in higher surface roughness, while the increase in the feed rate produced more burrs around the edges of the holes. Additionally, the burrs formed at the exit side of holes were larger than those formed at the entry side. The high drill size resulted in greater chip thickness and an increased built-up edge on the cutting tools.


1979 ◽  
Vol 101 (2) ◽  
pp. 281-290 ◽  
Author(s):  
V. Latinovic ◽  
R. Blakely ◽  
M. O. M. Osman

The design procedure of optimal multi-edge BTA deep-hole machining tools with unsymmetrically located cutters and preliminary test evidence are presented. Based on a mathematical model of cutting forces in terms of fundamental cutting parameters of the tool, a multivariable, nonlinear objective function was derived and modified to an unconstrained type with bounded decision variables. A numerical, direct search method, accelerated in distance, was selected to minimize the objective function. This procedure insures, on one hand, a predetermined cutting force resultant necessary for tool guidance; on the other hand, it minimizes the variation of cutting edge pressure. A relatively fast computer routine was adapted to provide the optimal tool parameters, which then were used to design cutting head prototypes. Two trepanning heads of three and two cutters were manufactured and tested at production facilities. The test results showed that the cutting force resultant was well predicted in both heads and that they were well guided. Much higher feed rates were possible compared to those achieved with single-edge tools without any loss of hole accuracy straightness or surface finish.


2011 ◽  
Vol 201-203 ◽  
pp. 2597-2600
Author(s):  
Zhan Feng Liu ◽  
Rui Liang Li

Through the analysis for steel of 4145H drill collar, Research into the various factors of cutting, such as the cutting tool material, cutting-tool angle and cutting parameters, combined with the actual structure of the workpiece and the superlong deep-hole processing method for study. In the test, the machining process is analyzed, especially the process of boring and honing. The test result indicates that the trepanning process is stable and reliable to solve the superlong deep hole (Φ71mm×7500mm) of 4145H drill collar steel processing problems of production if the optimizing cutting method is appropriate and the cutting tools and the cutting parameters are rational.


2012 ◽  
Vol 723 ◽  
pp. 365-370 ◽  
Author(s):  
Rong Bian ◽  
Eleonora Ferraris ◽  
Jun Qian ◽  
Dominiek Reynaerts ◽  
Liang Li ◽  
...  

This work presents an experimental investigation on micro-milling of fully sintered Zirconia (ZrO2) by diamond coated tools. The experiments were conducted on a Kern MMP 2522 micro-milling centre and WC micro end mills, diamond coated by chemical vapour deposition (CVD) and of stiff geometry were employed as cutting tools. The effects of cutting parameters and milling time on tool wear were investigated. The results revealed that the tool wear characters included diamond coating delamination and wear of substrate WC. Both cutting forces and machined surface quality were affected by tool wear with the progress of milling.


POROS ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Rosehan Rosehan Rosehan

Cutting force and tool life is the important data in planning a machining process. The research is in order to describe about the influence of the cutting force to the tool wear on carbide coated cutting tools used the turning process of an alloy steel of AISI 4340. The research was conducted by observing the growth of tool wear on minutes 4.5, 9, 13.5, 18, 22.5 with the maximum value VB 0.3 mm, at the same time, the condition of other cutting such as the motion while the cutting, the depth and speed of the cutting movement was constant. The purpose of this experiment is to examine scientifically the influence cutting force to the growth of tool wear on carbide coated while the cutting process of alloy steel AISI 4340. The graphical method was used for the trial analysis, to see the cutting force comparison with the decrease of tool life of the carbide coated, and the correlation of the cutting movement with the cutting force. The mechanism decrease showed the adhesion decrease.


2010 ◽  
Vol 438 ◽  
pp. 203-209 ◽  
Author(s):  
Fritz Klocke ◽  
Susanne Eva Cordes ◽  
Klaus Gerschwiler

The machining of difficult-to-cut materials such as nickel-based alloys and austenitic steels are focus in a lot of investigations for a long time. When machining these materials, different effects are overlapping. Approaches to overcome the several problems when machining these materials can be an appropriate coating system for the cutting tool as well as innovative lubricants. Coatings are one of the most common possibilities to improve the cutting performance of tools, notably the tool life as well as the material removal rate. Aluminium oxide coatings made by Physical Vapour Deposition (PVD) technology is a promising coating material for cutting operations. Due to its outstanding characteristics, such as high hardness, high thermal stability and low tendency to adhesion aluminium oxide is a predestined material for the machining of difficult-to-cut materials. In combination with innovative environmental friendly lubricants, the performance of cutting tools is increasing significantly. The objective of this work is to study the wear mechanisms and the cutting performance of aluminium oxide based coated tools in turning, drilling and milling operations.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Luis Huerta ◽  
Alejandro Lozano-Guzmán ◽  
Horacio Orozco-Mendoza ◽  
Juan Carlos Jauregui-Correa

Friction forces are present in any machining process. These forces could play an important role in the dynamics of the system. In the cutting process, friction is mainly present in the rake face and the flank of the tool. Although the one that acts on the rake face has a major influence, the other one can become also important and could take part in the stability of the system. In this work, experimental identification of the friction on the flank is presented. The experimental determination was carried out by machining aluminum samples in a CNC lathe. As a result, two friction functions were obtained as a function of the cutting speed and the relative motion of the contact elements. Experiments using a worn and a new insert were carried out. Force and acceleration were recorded simultaneously and, from these results, different friction levels were observed depending on the cutting parameters, such as cutting speed, feed rate, and tool condition. Finally, a friction model for the flank friction is presented.


Sign in / Sign up

Export Citation Format

Share Document