scholarly journals Electrodeposition of Sn–In Alloys Involving Deep Eutectic Solvents

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 800
Author(s):  
Anicai ◽  
Petica ◽  
Costovici ◽  
Moise ◽  
Brincoveanu ◽  
...  

Tin–indium alloys represent attractive lead-free solder candidates. They show lower values of melting point than pure indium, so that they are investigated as materials with significant applications potential in the electronic industry. Electrodeposition is a very convenient route to prepare Sn–In alloys. The paper presents several experimental results regarding the electrodeposition of Sn–In alloy coatings involving deep eutectic solvents (DESs), namely using choline chloride-ethylene glycol eutectic mixtures. The influence of the main operating parameters on the Sn–In alloy composition and characteristics are presented. Adherent and uniform Sn–In alloy deposits containing 10–65 wt % In have been obtained on Cu substrates. The In content was found to increase as both the In:Sn molar concentration ratio of ionic species in the electrolyte and the applied temperature increased. The use of pulsed current allowed the use of higher current densities leading to slightly higher values of In content in the alloy deposit. X-ray diffraction (XRD) analysis revealed the presence of InSn4 and In3Sn phases in agreement with the phase diagram. According to thermogravimetric analysis (TGA) measurements, values of melting points in the range of 118.6 and 127.5 °C were obtained depending on the alloy composition. The solder joints’ behavior and alloy coatings corrosion performance were also discussed.

2020 ◽  
Vol 1010 ◽  
pp. 104-108
Author(s):  
Wei Yee Wong ◽  
Rabiatul Adawiyah Shamsudin ◽  
Muhammad Firdaus Mohd Nazeri ◽  
Mohamad Najmi Masri

Sn-0.7Cu lead free solder has become an alternative material to replace Sn-Pb solder. However, it has the weakness of high melting point and poor corrosion behavior. Through the study, Sn-0.7-xZn microstructure and phase changes were studied through scanning electron microscope (SEM) and X-ray diffraction (XRD). SEM result shows microstructure Cu6Sn5 is precipitated with rod like shape while CuZn is shown in bump oval shape whereas compounds that presented are Cu6Sn5 and Cu5Zn8 as shown in the XRD analysis result.


2019 ◽  
Vol 70 (8) ◽  
pp. 2968-2972
Author(s):  
Elena Ionela Neacsu ◽  
Virgil Constantin ◽  
Cristina Donath ◽  
Kazimir Yanushkevich ◽  
Aliona Zhivulka ◽  
...  

The corrosion behaviour of special alloys (Uranus B6 steel and Monel 400) exposed to chlorine chloride-deep eutectic solvents (DES) at 353 K has been investigated by polarization curves method. The corresponding corrosion parameters in choline chloride-oxalic acid and choline chloride-malonic acid were calculated. Micrographic images before and after immersion in the corrosive medium were obtained. Measurements of the influence of the corrosion process on the crystal structure and specific magnetization of the studied steels was carried out by using X-ray diffraction and respectivelly ponderomotive methods.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1154
Author(s):  
Xiaozhou Cao ◽  
Lulu Xu ◽  
Chao Wang ◽  
Siyi Li ◽  
Dong Wu ◽  
...  

The electrochemical behavior and electrodeposition of Sn were investigated in choline chloride (ChCl)–urea deep eutectic solvents (DESs) containing SnCl2 by cyclic voltammetry (CV) and chronoamperometry techniques. The electrodeposition of Sn(II) was a quasi-reversible, single-step two-electron-transfer process. The average transfer coefficient and diffusion coefficient of 0.2 M Sn(II) in ChCl–urea at 323 K were 0.29 and 1.35 × 10−9 cm2∙s−1. The nucleation overpotential decreased with the increase in temperature and SnCl2 concentration. The results of the chronoamperometry indicated that the Sn deposition on tungsten electrode occurred by three-dimensional instantaneous nucleation and diffusion controlled growth using the Scharifker–Hills model. Scanning electron microscopy (SEM) showed that the morphology of the deposits is uniform, as a dense and compact film prepared by potentiostatic electrolysis on Cu substrate. X-ray diffraction (XRD) analysis revealed that the deposits were pure metallic Sn.


2021 ◽  
Vol 35 (05) ◽  
pp. 2150063
Author(s):  
Bo Wang ◽  
Kailin Pan ◽  
Yubing Gong ◽  
Yuhong Long ◽  
Kai Shi

Wettability, porosity and mechanical properties of ultrasonic-aided laser reflow soldering lead-free solder Sn-3.0Ag-0.5Cu (SAC305) on Cu pad have been investigated at ultrasonic vibration (USV) of different power. The parameters of laser reflow soldering are determined by the wetting experiment, and the effects of different ultrasonic powers on the performance of the solder joint are studied. Results showed that USV can improve wettability without keyholes on top of the solder joint, and the contact angle between the solder joint and the substrate decreases first and then increases as the ultrasonic power increases. The cavitation effect caused by USV effectively reduces the porosity of the solder joints. When the ultrasonic power is 225 W, the porosity of the solder joint is reduced from the initial 13.2% to 5.2%. Through X-ray Diffraction (XRD) analysis of the solder joint matrix, all solder joints have diffraction peaks of [Formula: see text]-Sn, Cu6Sn5 and Ag3Sn, and the solder joints show higher diffraction peak intensity with USV treated. Furthermore, the solder joints prepared by ultrasonic-aided laser reflow soldering show better shear strength compared with laser reflow soldering.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (1) ◽  
pp. 17-23
Author(s):  
KEVIN TAYLOR ◽  
RICH ADDERLY ◽  
GAVIN BAXTER

Over time, performance of tubular backpulse pressure filters in kraft mills deteriorates, even with regular acid washing. Unscheduled filter replacement due to filter plugging results in significant costs and may result in mill downtime. We identified acid-insoluble filter-plugging materials by scanning electron microscope/energy-dispersion X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis in both polypropylene and Gore-Tex™ membrane filter socks. The major filter-plugging components were calcium sulfate (gypsum), calcium phosphate (hydroxylapatite), aluminosilicate clays, metal sulfides, and carbon. We carried out detailed sample analysis of both the standard acid-washing procedure and a modified procedure. Filter plugging by gypsum and metal sulfides appeared to occur because of the acid-washing procedure. Gypsum formation on the filter resulted from significant hydrolysis of sulfamic acid solution at temperatures greater than 130°F. Modification of the acid-washing procedure greatly reduced the amount of gypsum and addition of a surfactant to the acid reduced wash time and mobilized some of the carbon from the filter. With surfactant, acid washing was 95% complete after 40 min.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5970
Author(s):  
Nabil Al-Zaqri ◽  
Mohammed Suleiman ◽  
Anas Al-Ali ◽  
Khaled Alkanad ◽  
Karthik Kumara ◽  
...  

The exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2–sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural parameters results were matched with the X-ray diffraction (XRD) crystallographic parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals (HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR, were compared to the experimental UV–Vis., optical energy gap, FTIR, and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated in an open atmosphere by a thermogravimetric–derivative thermogravimetric analysis, indicating its stability up to 95 °C.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


Soft Matter ◽  
2021 ◽  
Author(s):  
Meng Sun ◽  
Qintang Li ◽  
Xiao Chen

Luminescent gels have been successfully fabricated through the self-assembly of sodium cholate and a europium ion in choline chloride-based deep eutectic solvents.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 729
Author(s):  
Junhyub Jeon ◽  
Namhyuk Seo ◽  
Hwi-Jun Kim ◽  
Min-Ha Lee ◽  
Hyun-Kyu Lim ◽  
...  

Fe-based bulk metallic glasses (BMGs) are a unique class of materials that are attracting attention in a wide variety of applications owing to their physical properties. Several studies have investigated and designed the relationships between alloy composition and thermal properties of BMGs using an artificial neural network (ANN). The limitation of the wide-scale use of these models is that the required composition is yet to be found despite numerous case studies. To address this issue, we trained an ANN to design Fe-based BMGs that predict the thermal properties. Models were trained using only the composition of the alloy as input and were created from a database of more than 150 experimental data of Fe-based BMGs from relevant literature. We adopted these ANN models to design BMGs with thermal properties to satisfy the intended purpose using particle swarm optimization. A melt spinner was employed to fabricate the designed alloys. X-ray diffraction and differential thermal analysis tests were used to evaluate the specimens.


Sign in / Sign up

Export Citation Format

Share Document