The Preliminary Study of the Addition Zinc in Tin-Copper Lead Free Solder

2020 ◽  
Vol 1010 ◽  
pp. 104-108
Author(s):  
Wei Yee Wong ◽  
Rabiatul Adawiyah Shamsudin ◽  
Muhammad Firdaus Mohd Nazeri ◽  
Mohamad Najmi Masri

Sn-0.7Cu lead free solder has become an alternative material to replace Sn-Pb solder. However, it has the weakness of high melting point and poor corrosion behavior. Through the study, Sn-0.7-xZn microstructure and phase changes were studied through scanning electron microscope (SEM) and X-ray diffraction (XRD). SEM result shows microstructure Cu6Sn5 is precipitated with rod like shape while CuZn is shown in bump oval shape whereas compounds that presented are Cu6Sn5 and Cu5Zn8 as shown in the XRD analysis result.

2020 ◽  
Vol 2020 (1) ◽  
pp. 000235-000241
Author(s):  
Fred Fuliang Le ◽  
Rinse van der Meulen ◽  
Yoon Kheong Leong ◽  
Manoj Balakrishnan ◽  
Zunyu Guan

Abstract High melting point (HMP) lead-free solder, hybrid sinter and transient liquidus phase sinter (TLPS) are the emerging lead-free alternatives for the potential replacement of high-lead solder. Lead-free solder is perfectly compatible with existing high-lead soldering processes for clip bond packages. The benefit of hybrid sinter is that it has much higher thermal and electrical conductivity than lead-free or high-lead solder. In this study, ten materials (including lead-free solders, hybrid sinter paste and TLPS) were first evaluated via die shear test. With the initial material screening, two lead-free solders (solder 1 and 2), two hybrid Ag sinter pastes (sinter i and ii) and one TLPS proceeded to internal sample assembly. For the lead-free solders, a process optimization with the aid of vacuum reflow was made to reduce void rate. Due to the slow and unbalanced inter-diffusion of Ag-Cu sintering than Ag-Ag sintering, optimizations to enhance the hybrid Ag sintering include Ag finishing for the die metallization and Ag plating for the clip and bond area of the leadframe. In 0-hour package electrical test, solder 1 and sinter i passed and were sent for reliability testing while solder 2, sinter ii and TLPS failed due to intermetallic compound (IMC) cracking, material bleeding and die cracking, respectively. In the reliability testing, a basic scheme of thermal cycling (TC) 1000 cycles, intermittent operating life (IOL) 750 hrs and highly accelerated temperature and humidity stress test (HAST) 96 hrs was defined for the early feasibility study. 1 of 75 sinter i units failed by TC 1000 cycles due to separation between silver sinter structure and die bottom metallization. Solder 1 passed the basic scheme without defects, and next the material workability and clip bond strength need to be improved to the equivalent level of high-lead solders.


Author(s):  
Martin Ďurišin ◽  
Juraj Ďurišin ◽  
Ondrej Milkovič ◽  
Alena Pietriková ◽  
Karel Saksl

This work is focused on a development and research of a new lead-free Sn-Mg solder, alloy compatible with the human body. Tin and magnesium are biocompatible elements which do not cause an inflammation or allergic reactions with living tissues. We have prepared the Sn97Mg3 solder (wt. %) by a rapid solidification of its melt on a copper wheel (melt-spinning technique). This solder may find applications in electronic devices for intracorporeal utilisation. The microstructure of the prepared solder exhibits a heterogeneous distribution of the SnMg2 intermetallic particles within the β-Sn matrix. Structure of the solder was studied by an in-situ high energy X-ray diffraction experiment (energy of an X-ray photon: 60 keV) where 2D XRD patterns were collected from the sample in the temperature range from 298 K to 566 K. The experiment was performed at a high brilliance 3rd generation synchrotron source of radiation (PETRA III storage ring, DESY, Hamburg, Germany) at the P02 undulator beamline. From the measured X-ray diffraction data by applying the Rietveld refinement technique we have obtained thermal volume expansion data, mean positions of atoms as well as isotropic atomic displacement parameters of the constituent SnMg2 and the β-Sn crystalline phases. Thermal behaviour was studied by differential scanning calorimetry at heating rates of 5, 15, 30 and 60 K.min-1 and compared with the measured X-ray data. Our main goal lies in a preparation of a lead-free solder with fine grain structure made exclusively of biocompatible elements. We demonstrated that the rapid melt solidification technique leads to in an improvement and better thermal stability of this alloy.


Author(s):  
Aimi Noorliyana Hashim ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Muhammad Mahyiddin Ramli ◽  
Khor Chu Yee ◽  
Noor Zaimah Mohd Mokhtar

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Lei Sun ◽  
Liang Zhang

SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth) and nanoparticles to the SnAgCu solders. In this paper, the work of SnAgCu lead-free solders containing alloying elements and nanoparticles was reviewed, and the effects of alloying elements and nanoparticles on the melting temperature, wettability, mechanical properties, hardness properties, microstructures, intermetallic compounds, and whiskers were discussed.


2012 ◽  
Vol 501 ◽  
pp. 160-164 ◽  
Author(s):  
Iziana Yahya ◽  
Noor Asikin Ab Ghani ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Hamidi Abd Hamid ◽  
Zainal Arifin Ahmad ◽  
...  

The toxicity in the Sn-Pb solder has promoted the development of Pb-free solder in the electronics industries. Among the Pb-solders, the Sn-3.5Ag-1.0Cu solder is considered a potential replacement and being studied by many researchers. In the present study, the characteristics of Sn-3.5Ag-1.0Cu lead-free solder were studied. The raw materials were tin, silver and copper powders in micron size. The solder was prepared using powder metallurgy route which includes blending, compacting and sintering. Four blending times and two compacting pressures were used to investigate for optimum condition. The melting temperature of the samples were studied using differential scanning calorimeter (DSC) and the presence of Sn Ag, Cu were confirmed using x-ray diffraction analysis (XRD). Finally the effect of variables on the hardness of the solders is reported.


2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  


Sign in / Sign up

Export Citation Format

Share Document