Effect of Engine Operating Conditions and Lubricant Rheology on the Distribution of Losses in an Internal Combustion Engine

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Riaz A. Mufti ◽  
Martin Priest

With new legislation coming into place for the reduction in tail-pipe emissions, the OEMs are in constant pressure to meet these demands and have invested heavily in the development of new technologies. OEMs have asked lubricant and additive companies to contribute in meeting these new challenges by developing new products to improve fuel economy and reduce emissions. Modern low viscosity lubricants with new chemistries have been developed to improve fuel consumption. However, more work is needed to formulate compatible lubricants for new materials and engine technologies. In the field of internal combustion engines, researchers and scientists are working constantly on new technologies such as downsized engines, homogeneous charge compression ignition, the use of biofuel, new engine component materials, etc., to improve vehicle performance and emissions. Mathematical models are widely used in the automotive and lubricants industry to understand and study the effect of different lubricants and engine component materials on engine performance. Engine tests are carried out to evaluate lubricants under realistic conditions but they are expensive and time consuming. Therefore, bench tests are used to screen potential lubricant formulations so that only the most promising formulations go forward for engine testing. This reduces the expense dramatically. Engine tests do give a better picture of the lubricants performance but it does lack detailed tribological understanding as crankcase oil has to lubricant all parts of the engines, which do operate under different tribological conditions. Oil in an engine experiences all modes of lubrication regimes from boundary to hydrodynamic. The three main tribological components responsible for the frictional losses in an engine are the piston assembly, valve train, and bearings. There are two main types of frictional losses associated with these parts: shear loss and metal to metal friction. Thick oil in an engine will reduce the boundary friction but will increase shear losses whereas thin oil will reduce shear friction but will increase boundary friction and wear. This paper describes how engine operating conditions affect the distribution of power loss at component level. This study was carried out under realistic fired conditions using a single cylinder Ricardo Hydra gasoline engine. Piston assembly friction was measured using indicated mean effective pressure method and the valve train friction was measured using specially designed camshaft pulleys. Total engine friction was measured using pressure-volume diagram and brake torque measurements, whereas engine bearing friction was measured indirectly by subtracting the components from total engine friction. The tests were carried out under fired conditions and have shown changes in the distribution of component frictional losses at various engine speeds, lubricant temperatures, and type of lubricants. It was revealed that under certain engine operating conditions the difference in total engine friction loss was found to be small but major changes in the contribution at component level were observed.

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 843 ◽  
Author(s):  
Max Marian ◽  
Tim Weikert ◽  
Stephan Tremmel

The overall energy efficiency of machine elements and engine components could be improved by using new technologies such as surface modifications. In the literature, surface engineering approaches like micro-texturing and the application of diamond-like carbon (DLC) coatings were frequently studied separately, with focus on a specific model contact and lubrication conditions. The contribution of the current study is to elucidate and compare the underlying friction reduction mechanisms of the aforementioned surface modifications in an application-orientated manner. The study applied the operating conditions of the thermo-elastohydrodynamically lubricated (TEHL) cam/tappet-contact of the valve train. Therefore, tribological cam/bucket tappet component Stribeck tests were used to determine the friction behavior of ultrashort pulse laser fabricated microtextures and PVD/PECVD deposited silicon-doped amorphous carbon coatings. Moreover, advanced surface characterization methods, as well as numerical TEHL tribo-simulations, were utilized to explore the mechanisms responsible for the observed tribological effects. The results showed that the DLC-coating could reduce the solid and fluid friction force in a wide range of lubrication regimes. Conversely, micro-texturing may reduce solid friction while increasing the fraction of fluid friction.


Author(s):  
Paul J. Shayler ◽  
John A. Burrows ◽  
Clive R. Tindle ◽  
Michael Murphy

Abstract Most studies of engine friction have been carried out at fully-warm operating conditions. Relatively little attention has been given to frictional losses when the engine is running cold, although these can be considerably higher and have a strong influence both on cold-start characteristics and fuel consumption during warm-up. The losses which effect the indicated load on the engine are rubbing losses and loads associated with driving auxiliaries. The equivalent frictional mean effective pressures (fmep) are generally highest during the first seconds of engine operation. These decay rapidly onto a characteristic variation which depends upon oil viscosity, and which fmep follows throughout the warm-up period. The oil viscosity can be evaluated at the bulk temperature of oil in the sump or main gallery. Breakdown motoring tests have been carried out on a series of diesel engines to examine how the friction contribution of various sub-assemblies in the engine contribute to the total and how this varies with temperature and speed. Tests were carried out using a compact cold cell and engine motoring facility. The engine was cold soaked to a target test temperature and then motored to a target speed and the variation of motoring torque recorded. Sets of tests were carried out at several stages of breaking the engine down. This enables the contributions due to the valve train, piston and big end assembly, crankshaft, fuel injection pump, and auxiliary load to be determined.


Author(s):  
R. I. Taylor

The sensitivity of engine friction to lubricant viscometry has been determined for a modern fuelefficient engine, the Mercedes Benz M111 2.0 litre gasoline engine, under both cold starting and fully warmed-up conditions. The study has taken into account realistic lubricant viscometric parameters such as the lubricant viscosity variation with shear rate and temperature. Results are reported for the variation of engine friction with different monograde and multigrade lubricants, including the distribution of friction losses between valve train, piston assembly and bearings with the different lubricant types. The work also enabled estimates to be made of the proportion of hydrodynamic and boundary friction in the engine, since the vast majority of boundary lubrication occurs in the valve train. Knowledge of the ratio of boundary to hydrodynamic lubrication was found to be important since the two key lubricant parameters that can be varied are (a) viscosity and (b) the introduction of a friction modifier additive. The viscosity of the lubricant will affect the hydrodynamically lubricated parts of the engine whereas the presence of a friction modifier will reduce boundary friction in the engine. Brief comparisons are made of the lubricant sensitivity of the Mercedes Benz M111 engine with other important fuel-efficient engines (such as the Ford Sequence VI and Ford Sequence VIA engines).


Author(s):  
RI Taylor ◽  
N Morgan ◽  
R Mainwaring ◽  
T Davenport

Automotive engines are believed to operate predominantly in the hydrodynamic regime, as evidenced by the (1) the successful strategy of reducing lubricant viscosity to reduce engine friction and improve vehicle fuel consumption, and (2) for most engine operating conditions, direct measurements of engine friction (either motored or fired) find that engine friction increases with increasing engine speed. However, certain components in an engine are known to operate mainly in the mixed/boundary lubrication (e.g. the valve train) and other components (such as the piston rings) operate in the mixed/boundary regime for a portion of the time. In order to quantify the amount of mixed/boundary lubrication in an engine, and in the individual components of the engine, motored and fired friction tests have been carried out for a range of lubricants (of differing viscosity grade, and with/without friction modifier additives). A full discussion of the implications of this work, which includes the impact of fuel dilution and “running-in” is included with insights given into how the work reported here guides the development of future fuel-efficient engine lubricants.


Author(s):  
Sameer Magar ◽  
Hong Guo ◽  
Patricia Iglesias

Lubricants play a vital role in improving energy efficiency and reducing friction in any type of frictional contact. The automotive industry is facing strict regulations in terms of emissions from the petroleum fuel. Strict government norms are compelling automotive manufacturers to push their technological limits to improve the fuel economy and emissions from their vehicles. Improving the efficiency of the engine will ultimately result in saving fuel thus improving the fuel economy of the engine. Concerning energy consumption; 33% of the fuel energy developed by combustion of fuel is dissipated to overcome the friction losses in the vehicle [1]. Out of this, 11.56% of the total fuel energy is lost in engine system. The distribution of this 11.56% fuel energy lost in engine system includes 3.5% consumed in bearings, 1.16% in pumping and hydraulic viscous losses, 5.2% and 1.73% consumed in piston assembly and valve train respectively [1]. If we consider losses only in bearings, piston assembly and valve train it results in 10.4% energy loss as compared to the total energy generated by the fuel. In the last decade, ionic liquids have shown potential as lubricants and lubricant additives. This study focusses on the use ionic liquids as additives for friction and wear reduction resulting in energy conservation in an internal combustion engine. In this work, the contact between piston ring and cylinder wall was simulated using a ball-on-flat tribometer. Most of the engine oils are based on mineral oils and results showed that adding 1% of the ionic liquid to mineral oil reduced friction loses by 27% [2], which corresponds to conserving 2.8% of fuel energy if just the frictional loss in piston assembly, valve train and bearing are considered. In the United States, there are 253 million vehicles on average consuming 678 gallons of fuel per year [3], the use of ionic liquid can save an estimated 4.8 billion gallons of fuel per year, which results in estimated saving of 11.56 billion dollars.


2018 ◽  
Author(s):  
Hannes Allmaier ◽  
Christoph Knauder ◽  
David E Sander ◽  
Franz M. Reich

The entanglement of an innovative measurement technique with an accurate simulation yields in total a powerful tool to investigate the friction power losses in engines under realistic operating conditions, as will be discussed in the following. While the total engine friction power losses and the friction of the valve train are measured experimentally, the friction power losses of the crank train journal bearings are calculated using simulation. The result is in an efficient and powerful determination of the individual engine subassemblies under realistic operating conditions ranging from idle to full load operation. The presented method can be used to assess the efficiency of various friction reduction measures like cylinder deactivation, (ultra)low viscosity lubricants or coatings and won in 2014 the Innovation award of Magna Logistics Europe.


Author(s):  
Christoph Knauder ◽  
Hannes Allmaier ◽  
Stefan Salhofer ◽  
Theodor Sams

Generally, mating surfaces that are in tribological contact undergo a running-in process at the beginning of their operational lifetime. During this running-in phase, the tribological operating condition changes significantly leading ideally to long-term operation with a minimum of continuous wear. While this process and its duration are rather well understood for single machine elements like journal bearings, it is the aim of this work to investigate the running-in behaviour of more complex systems like an internal combustion engine and its sub-assemblies. To gain insight into the influence and duration of this running-in phase, a series of tests have been performed under realistic engine operating conditions. To be able to separate the running-in processes for the individual subsystems’ piston assembly, valve train and journal bearings of the crank train, a large series of tests have been conducted for a conventional gasoline passenger car engine. The results show a strong influence of the running-in process on total engine friction, which can be attributed mostly to the direct acting valve train and to a considerably lesser extent to the piston assembly.


2020 ◽  
Vol 10 (9) ◽  
pp. 3102 ◽  
Author(s):  
Angela Laderou ◽  
Mahdi Mohammadpour ◽  
Stephanos Theodossiades ◽  
Richard Daubney ◽  
Gareth Meeks

An experimentally validated tribo-dynamic model has been developed to predict the gear teeth frictional losses considering the properties of the diamond-like-carbon (DLC)-coated and tungsten carbide carbon (WCC)-coated surface. The operating conditions used are snapshots of the Real Driving Emissions (RDE) driving cycle. The results demonstrate that the use of these coatings can improve the frictional losses up to 50%. The gear teeth boundary friction model is enriched by experimentally measured coefficients of the surface asperity boundary shear strength using an atomic force microscope (AFM). The computationally efficient model enables the efficiency prediction in a complete transmission. Such an approach, considering the contact mechanics of coated gear and their effect on the viscous and boundary friction, has not been hitherto reported.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3966
Author(s):  
Jarosław Mamala ◽  
Michał Śmieja ◽  
Krzysztof Prażnowski

The market demand for vehicles with reduced energy consumption, as well as increasingly stringent standards limiting CO2 emissions, are the focus of a large number of research works undertaken in the analysis of the energy consumption of cars in real operating conditions. Taking into account the growing share of hybrid drive units on the automotive market, the aim of the article is to analyse the total unit energy consumption of a car operating in real road conditions, equipped with an advanced hybrid drive system of the PHEV (plug-in hybrid electric vehicles) type. In this paper, special attention has been paid to the total unit energy consumption of a car resulting from the cooperation of the two independent power units, internal combustion and electric. The results obtained for the individual drive units were presented in the form of a new unit index of the car, which allows us to compare the consumption of energy obtained from fuel with the use of electricity supported from the car’s batteries, during journeys in real road conditions. The presented research results indicate a several-fold increase in the total unit energy consumption of a car powered by an internal combustion engine compared to an electric car. The values of the total unit energy consumption of the car in real road conditions for the internal combustion drive are within the range 1.25–2.95 (J/(kg · m)) in relation to the electric drive 0.27–1.1 (J/(kg · m)) in terms of instantaneous values. In terms of average values, the appropriate values for only the combustion engine are 1.54 (J/(kg · m)) and for the electric drive only are 0.45 (J/(kg · m)) which results in the internal combustion engine values being 3.4 times higher than the electric values. It is the combustion of fuel that causes the greatest increase in energy supplied from the drive unit to the car’s propulsion system in the TTW (tank to wheels) system. At the same time this component is responsible for energy losses and CO2 emissions to the environment. The results were analysed to identify the differences between the actual life cycle energy consumption of the hybrid powertrain and the WLTP (Worldwide Harmonized Light-Duty Test Procedure) homologation cycle.


Sign in / Sign up

Export Citation Format

Share Document