scholarly journals The Potential of Sky Fruit as an Anti-Aging and Wound Healing Cosmeceutical Agent

Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 79
Author(s):  
Camille Keisha Mahendra ◽  
Loh Teng Hern Tan ◽  
Cayvern Kishen Mahendra ◽  
Hooi-Leng Ser ◽  
Priyia Pusparajah ◽  
...  

There are many extrinsic factors that can contribute to the premature aging of the skin. In recent years, the demand for natural cosmetic from the general population has noticeable grow. Therefore, this research aimed to investigate the bioproperties of sky fruit (Swietenia macrophylla) seed extract that could help to inhibit premature skin aging. Firstly, the extract and its fractions were tested on HaCaT cells for their wound healing properties. The presence of sky fruit’s extract and its fractions on scratch wound significantly improved cellular proliferation, migration, and closure of the wound. These effects were distinctly observed following the treatment with S. macrophylla hexane fraction (SMHF) and S. macrophylla water fraction (SMWF). Our continuous research study revealed that SMWF had antioxidant properties, which might be one of the factors contributing to its emerging wound healing properties because antioxidants are known to act as suppressors of the inflammatory pathway and aid the transition towards cell proliferation. In addition, all samples had critical wavelengths that indicated that they were able to absorb the whole UVB range and some parts of the UVA wavelength. This suggested that S. macrophylla might contain potential photoprotective bioactive compounds, which could be developed into anti-UVB photoprotective sunscreens. Thus, this warrants further studies focusing on isolation and identifications of the bioactive compounds responsible for both its photoprotective and wound healing properties. A deeper study on mechanisms of the pathways that were affected by these compounds should be conducted as well to better understand this natural product and develop it into a potential cosmeceutical ingredient.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Abdel-Fattah WI ◽  
◽  
El-Bassyouni GT ◽  

Drug innovation using natural products is an interesting mission for planning new leads. It describes the bioactive compounds resulting from natural resources, characterization and pharmacological examination. It emphases on the triumph of these resources in the process of finding and realizing new and effective drug compounds that can be beneficial for human resources. For medicinal devotions and for the progress of pharmaceutical substances, medicinal plants were used such as Physalis angulata L which is a medicinal plant used for numerous therapies including wound healing [1]. Physalis peruviana (golden berry) is an herbaceous annual plants belongs to the family Solanaceae [2]. This plant has a tremendous medicinal value for curing out different diseases: cancer, leukemia, diabetes, ulcers, malaria, asthma, hepatitis, dermatitis, rheumatism and several other diseases [3]. The golden berry fruit tastes like a sweet tomato and includes high levels of vitamin C, vitamin A and the vitamin B-complex. The fruit was demonstrated to have both antiinflammatory and antioxidant properties [4,5]. Herbal specialists and local people of several countries have used many extracts of medicinal plants to achieve and treat various diseases comprising wound healing [6]. Physalis with its notable benefits related to high nutrients and bioactive compounds with extraordinary antioxidant activity and other several medicinal properties have been ascribed to these compounds [7,8]. The bioactive compounds are formed as primary and secondary metabolites of the fruits. These compounds are biologically active with cytotoxic, antimicrobial, antioxidant, antiviral, fungicidal, insecticidal, tranquilizing, analgesic, anti-inflammatory, and contraceptive actions, among others. Such compounds are used for several dedications, such as in medical therapy, to cure diseases, in the cosmetics, and in the food industry as antioxidants or flavorings [9] (Figure 1).


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2019 ◽  
Vol 16 (4) ◽  
pp. 377-391 ◽  
Author(s):  
B.S. Jayashree ◽  
H. Venkatachalam ◽  
Sanchari Basu Mallik

Flavonoids constitute a large group of polyphenolic compounds that are known to have antioxidant properties, through their free radical scavenging abilities. They possess a chromone (γ- benzopyrone) moiety, responsible for eliciting many pharmacological activities. Even though, natural flavonoids are highly potent, owing to their poor solubility, they are less used. Therefore, attempts have been made to improve their stability, solubility, efficacy and kinetics by introducing various substituents on the flavone ring. For nearly the last two decades, flavones were synthesized in our laboratory by simple, convenient and cost-effective methods, with the knowledge of both synthetic and semi-synthetic chemistry. In this direction, it was considered worthwhile to present an overview on the synthesized flavonoids. This review creates a platform for highlighting various modifications done on the flavone system along with their biological activity.


2021 ◽  
Vol 11 (1) ◽  
pp. 430
Author(s):  
Hassan Hadi Mehdi Al Rubaiy ◽  
Ammar Altemimi ◽  
Ali Khudair Jaber Al Rikabi ◽  
Naoufal Lakhssassi ◽  
Anubhav Pratap-Singh

The present study proposes microwave-assisted extraction as a sustainable technique for the biosynthesis of bioactive compounds from rice fermented with Aspergillus flavus (koji). First, fermentation conditions (i.e., pH from 3–12, five temperatures from 20–40 °C, and four culture-fermentation media viz. wheat, wheat bran, malt and rice) were optimized for producing microbial bioactive compounds. Microwave extraction was performed at 2450 MHz and 500 W for 20, 30, and 40 s with seven solvents (distilled water, ethyl acetate, hexane, ethanol, chloroform, diethyl ether, and methanol). The obtained results revealed that ethyl acetate is the most appropriate solvent for extraction. Effects of this ethyl acetate extract were compared with a commercial synthetic antioxidant. Antioxidant properties were enhanced by preventing the oxidation of the linoleic acid (C18H32O2) with an inhibition rate (antioxidant efficacy) of 73.13%. Notably, the ferrous ion binding ability was marginally lower when compared to the disodium salt of ethylenediaminetetraacetic acid (EDTA). Additionally, the obtained total content of phenolic compounds in the ethyl acetate extract of fermented rice (koji) by Aspergillus flavus was 232.11 mg based on gallic acid/mL. Antioxidant compounds in the ethyl acetate extract of fermented rice showed stability under neutral conditions, as well as at high temperatures reaching 185 °C during 2 h, but were unstable under acidic and alkaline conditions. The results demonstrate the efficacy of novel microwave-assisted extraction technique for accelerating antioxidant production during rice fermentation.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4593
Author(s):  
Deepthi Venkatachalapathy ◽  
Chandan Shivamallu ◽  
Shashanka Prasad ◽  
Gopenath Thangaraj Saradha ◽  
Parthiban Rudrapathy ◽  
...  

The edible parts of the plants Camellia sinensis, Vitis vinifera and Withania somnifera were extensively used in ancient practices such as Ayurveda, owing to their potent biomedical significance. They are very rich in secondary metabolites such as polyphenols, which are very good antioxidants and exhibit anti-carcinogenic properties. This study aims to evaluate the anti-cancerous properties of these plant crude extracts on human liver cancer HepG2 cells. The leaves of Camellia sinensis, Withania somnifera and the seeds of Vitis vinifera were collected and methanolic extracts were prepared. Then, these extracts were subjected to DPPH, α- amylase assays to determine the antioxidant properties. A MTT assay was performed to investigate the viability of the extracts of HepG2 cells, and the mode of cell death was detected by Ao/EtBr staining and flow cytometry with PI Annexin- V FITC dual staining. Then, the protein expression of BAX and BCl2 was studied using fluorescent dye to determine the regulation of the BAX and BCl2 genes. We observed that all the three extracts showed the presence of bioactive compounds such as polyphenols or phytochemicals. The W. somnifera bioactive compounds were found to have the highest anti-proliferative activity on human liver cancer cells.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jianhua Zhang ◽  
Junfei Hu ◽  
Baoshu Chen ◽  
Tianbao Zhao ◽  
Zhipeng Gu

Abstract Wound healing dressing is increasingly needed in clinical owing to the large quantity of skin damage annually. Excessive reactive oxygen species (ROS) produced through internal or external environmental influences can lead to lipid peroxidation, protein denaturation, and even DNA damage, and ultimately have harmful effects on cells. Aiming to sufficiently contact with the wound microenvironment and scavenge ROS, superabsorbent poly (acrylic acid) and antioxidant poly (ester amide) (PAA/PEA) hybrid hydrogel has been developed to enhance wound healing. The physical and chemical properties of hybrid hydrogels were studied by Fourier-transform infrared (FTIR) absorption spectrum, compression, swelling, degradation, etc. Besides, the antioxidant properties of hybrid hydrogels can be investigated through the free radical scavenging experiment, and corresponding antioxidant indicators have been tested at the cellular level. Hybrid hydrogel scaffolds supported the proliferation of human umbilical vein endothelial cells and fibroblasts, as well as accelerated angiogenesis and skin regeneration in wounds. The healing properties of wounds in vivo were further assessed on mouse skin wounds. Results showed that PAA/PEA hybrid hydrogel scaffolds significantly accelerated the wound healing process through enhancing granulation formation and re-epithelialization. In summary, these superabsorbent and antioxidative hybrid hydrogels could be served as an excellent wound dressing for full-thickness wound healing.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1217
Author(s):  
Ganbolor Jargalsaikhan ◽  
Jin-Yi Wu ◽  
Yen-Chou Chen ◽  
Ling-Ling Yang ◽  
Ming-Shun Wu

The Mongolian rhubarb—Rheum undulatum L. (RU)—and Rumex crispus L. (RC)—a Taiwanese local rhubarb belonging to the family of Polygonaceae—are principal therapeutic materials in integrative medicine due to their rich quantities of bioactive compounds; however, their phytochemical and antioxidant properties, and anti-cancer activity is poorly investigated. Furthermore, the phytochemical characteristics of both species may be affected by their different geographical distribution and climatic variance. The current study aimed to compare RU with RC extracts in different polarity solvents (n-hexane, ethyl acetate, acetone, ethanol, and water) for their phytochemical contents including the total phenolic content (TPC), total anthraquinone content (TAC), total flavonoid content (TFC), antioxidant and free radical scavenging capacities, and anticancer ability on the HepG2 cell. Except for the n-hexane extract, all of the RU extracts had considerably higher TPCs than RC extracts, ranging from 8.39 to 11.16 mg gallic acid equivalent (GAE) per gram of dry weight, and the TPCs of each extract were also significantly correlated with their antioxidant capacities by ABTS, DPPH, and FRAP assays (p < 0.05). Moreover, there was no remarkable association between the antioxidant capacities and either TACs or TFCs in both the RU and RC extracts. Besides, high-performance liquid chromatography (HPLC) analysis revealed that both the RU and RC extracts contained chrysophanol, emodin, and physcion, and those bioactive compounds were relatively higher in the n-hexane solvent extracts. Additionally, we observed different levels of dose-dependent cytotoxic effects in all the extracts by cell viability assay. Notably, the ethanol extract of RU had a compelling cytotoxic effect with the lowest half-maximum inhibition concentration (IC50-171.94 ± 6.56 µg/mL at 48 h) among the RU extracts than the ethanol extract of RC. Interestingly, the ethanol extract of RU but not RC significantly induced apoptosis in the human liver cancer cell line, HepG2, with a distinct pattern in caspase-3 activation, resulting in increased PARP cleavage and DNA damage. In summary, Mongolian Rhubarb, RU, showed more phytochemical contents, as well as a higher antioxidant capacity and apoptotic effect to HepG2 than RC; thus, it can be exploited for the proper source of natural antioxidants and liver cancer treatment in further investigation.


2015 ◽  
Vol 126 ◽  
pp. 50-57 ◽  
Author(s):  
İpek Eroğlu ◽  
Evren H. Gökçe ◽  
Nicolas Tsapis ◽  
Sakine Tuncay Tanrıverdi ◽  
Göksel Gökçe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document