scholarly journals Design and Evaluation the Anti-Wear Property of Inorganic Fullerene Tungsten Disulfide as Additive in PAO6 Oil

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 570
Author(s):  
Wenting Chen ◽  
Kunyapat Thummavichai ◽  
Xiaorong Chen ◽  
Guangsheng Liu ◽  
Xuefeng Lv ◽  
...  

Inorganic fullerene-like tungsten disulfide particles have been proved to have good anti-friction and anti-wear properties as lubricating materials. As far as we know, however, when it is used as a lubricant additive, its behavior and action mechanism in the friction process are rarely studied. Herein, IF–WS2 particles were synthesized by a Chemical Vapor Deposition (CVD) method. The effect of IF–WS2 particle concentrations in the PAO6 oil on the tribological behaviors was investigated with a four-ball wear machine at both 75 and 100 °C. Additionally, the analyzed morphology and composition of nanomaterials and worn surfaces were analyzed by Scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The friction behavior in actual working conditions was studied by a wear testing machine. The experimental results show that compared with the original PAO6 oil, at a dispersion of 0.25 wt% in PAO6 oil, the IF–WS2 particles showed the best performance in terms of coefficient of friction, wear scar diameter and wear mass, which significantly reduced by 27%, 43% and 87%, respectively. At the same time, in the process of friction, it was found that IF–WS2 particles accumulated in the depressions to fill the scratches, and adsorption films and chemical films, including FeS2, WS2 and WO3, were formed on the worn surfaces to avoid the direct contact among the friction pairs more effectively, resulting in the improved anti-wear performances. Additionally, the addition of IF–WS2 particles effectively delayed the rise of lubricating oil temperature. In addition, dispersant span 80 can effectively improve the dispersion and stability of IF–WS2 in PAO6. This work provides us for understanding the effective lubrication mechanism of IF–WS2 particles in more detail and having a new acknowledge of the comprehensive performance of IF–WS2/PAO6 oil.

2012 ◽  
Vol 184-185 ◽  
pp. 1352-1355
Author(s):  
Hong Sheng Ding ◽  
Zhi Fang Cheng ◽  
Hui Rong ◽  
Lin Lu

Nano-structured Al2O3-13%TiO2 coating was deposited by air plasma spraying. Wear properties of the coatings under different load trough SRV friction and wear testing machine were studied, the results showed that wear mass loss of Al2O3-13%TiO2 coating by plasma spraying slide with ZrO2 and Si3N4 increase with load increasing, but the difference is that wear loss of coaing slide with Si3N4 ¬is lower than the coating slide with ZrO2 when load is less than 40N. Opposite phenomenon will occur when load is higher than 40N.The wear surface morphology was analyzed trough scanning electron microscopic, the results showed that coating slided with Si3N4 ball when matching at low loads, with a shallow furrow shape grinding. There were wide and deep furrows while at higher loads. Coating slide with ZrO2 ball has no obvious cracks, no layer spalling.Wear was occurred by micro cutting.


2007 ◽  
Vol 127 ◽  
pp. 245-250 ◽  
Author(s):  
Mitsuyasu Yatsuzuka ◽  
Yoshihiro Oka ◽  
Akifumi Tomita ◽  
Noritaka Murata ◽  
Mitsuaki Hirota

Diamond-like carbon film (DLC) with an interlayer of plasma sprayed tungsten-carbide (WC) was prepared on an aluminum alloy substrate (A5052) by a hybrid process of plasma-based ion implantation and deposition using hydrocarbon gas. Typical thicknesses of DLC and WC films were 1 μm and 100 μm, respectively. The hardness and friction coefficient of DLC were typically 15 GPa and 0.15, respectively. The durability of DLC/WC/A5052 system was evaluated from the measurement of the friction coefficient by a ball-on-disk friction tester in which the loaded ball was drawn repeatedly across a sample and the load was increased with each traverse. For the DLC/A5052 system, which has no WC interlayer, the DLC film was broken quickly because of distortion of the substrate. For the DLC/WC/A5052 system, on the other hand, the DLC film was excellent in durability for long running. The wear rate of rubber rotor to the metal rotor was measured by a roller-pitching-type wear testing machine, showing large reduction in wear rate using DLC-coated metal rotor.


2012 ◽  
Vol 624 ◽  
pp. 279-282
Author(s):  
Feng Zhan ◽  
Nan Chun Chen

Talc was modified by aluminate coupling agent (ACA) before filling it into high density polypropylene (HDPP) to prepare talc/HDPP composites. Scanning electron microscopy (SEM), wear testing machine, electronic universal testing machine, and impact testing machine were used to analyze the surface modification and the effects of modified talc on friction and mechanical properties of modified talc/HDPP composites. The results indicate that after modified the lamellar structure of talc particles are open and the dispersion of particles are improved, and the edges and corners of surface become softer. Friction properties indicate that when the talc content is 8 wt%, both µ and K are at a lower value, which show that have better wear resistance. The frictional surface is relatively smooth and no furrow trace has found. Mechanical properties show that with talc content increasing, tensile strength and flexural strength of composites increase.


2012 ◽  
Vol 476-478 ◽  
pp. 686-690 ◽  
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Bing Hua Jiang ◽  
Yi San Wang

This study dealt with the processing, microstructure and wear behavior of vanadium carbide reinforced iron matrix composite. Powder technology combined with in situ synthesis was used to successfully fabricate the composite. The microstructure of the composite was characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope. The microstructural study reveals that the round VC particles are distributed uniformly in the iron matrix, the interface between the iron matrix and VC is clean, and no interface precipitates is found. Dry-sliding wear behavior of VC-Fe composite was tested using MM-200 wear testing machine. The results indicate that the composite has excellent wear resistance, and microploughing and grooving are the dominant wear mechanisms for the composite. Hardness and bend strength of the composite are 62HRC and 990.1MPa, respectively.


2014 ◽  
Vol 984-985 ◽  
pp. 319-325 ◽  
Author(s):  
V. Bharath ◽  
Madeva Nagaral ◽  
V. Auradi ◽  
S.A. Kori

In the current investigation an attempt has been made and to produce ceramic Al2O3particulate reinforced 6061Al matrix composites by liquid metallurgy route (stir casting technique) and to study the dry sliding wear properties of the prepared composites. The amount of ceramic Al2O3particulate reinforcement addition was maintained at 9 and 12wt%. During the preparation of each composite the ceramic reinforcements were introduced in a novel way which involves three stage additions of reinforcements during melt stirring. The wear tests were conducted using pin on disc wear testing machine on 6061Al matrix before and after addition of Al2O3reinforcements Wear test results demonstrated the superior wear resistance of the composites over monolithic 6061Al alloy matrix. Key Words: MMC’s, Al2O3particulates, 6061Al, stir-casting


2014 ◽  
Vol 556-562 ◽  
pp. 624-627 ◽  
Author(s):  
Ran Xu ◽  
Yong Wang ◽  
Run Hong Liu ◽  
Hao Zou

The aim of this paper is to develop a kind of copper matrix self-lubricious material with excellent friction and wear characteristics. The copper-graphite composites reinforced with short copper-coated carbon fibers (CF-C/Cu) were successfully developed using techniques of mechanical alloying, composite plating and hot press vacuum sintering. For comparison, copper-graphite composites without short copper-coated carbon fibers (C/Cu) were made under the same process. The wear testing was carried out using a rapid wear testing machine (M-200).Friction coefficient was measured by a micro-wear tester (UMT).The microstructure, abrasive dust and worn surface of the wear pins on the different condition such as load and wear time were examined by SEM. It was noted that the addition of copper-coated carbon fiber in the Cu-based composites can retard the transformation process which transforms from micro-cutting wear to adhesive wear and delamination. The abrasion loss of the composites with short copper-coated carbon fibers appeared a valley when the load increased from 10N to 30N. It showed that the addition of copper-coated carbon fiber enhanced the anti-friction and anti-wear property of copper matrix composite and better than the sample without carbon fibers.


2017 ◽  
Vol 30 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Ye Zhu ◽  
Yingshuang Shang ◽  
Haibo Zhang ◽  
Lianjun Ding ◽  
Yunping Zhao ◽  
...  

Poly(ether sulfone) (PES) with high coefficient of friction (COF) and wear rate needs treatment to enhance its tribological property in engineering plastic area. Here, the low surface energy of perfluorocarbon chains terminated poly (ether sulfone) (PES-F) had been used to improve the tribological property of such self-lubricating materials. In this research, the performance enhancement due to the existence of perfluorocarbon group on the material surface was discussed on improvement of anti-friction and wear resistance. On the premise of mechanical strength guarantee, the variation regularity of COF and volume wear rate of PES-F were quantitatively analyzed through the pin-on-disc wear test apparatus, combined with X-ray photoelectron spectroscopy analysis. It was found that PES-F exhibited the best tribological property during the initial phases of friction test, attributing to the highest content of F on the material surface. Observation of PES-F worn surface and wear debris revealed that the COF and wear rate of modified PES were decreased not only due to the effect of perfluorocarbon group but also by the change of worn surface morphology, both of which were the main reasons for anti-friction and anti-wear property enhancement.


2007 ◽  
Vol 121-123 ◽  
pp. 975-978
Author(s):  
Yi Jun Shi ◽  
Xin Feng ◽  
X.S. Diao ◽  
Huai Yuan Wang ◽  
Xiao Hua Lu

The tribological and mechanical properties of carbon nanofiber (CNF)-filled polytetrafluoroethylene (PTFE) composites with different filler proportions were studied. The worn surfaces of PTFE and carbon nanofiber/PTFE (CNF/PTFE) composites were then examined with scanning electron microscope (SEM). The results show the friction properties of CNF/PTFE composites decreased then increased with the increasing content of CNFs, while the anti-wear properties of CNF/PTFE composites were much higher than that of pure PTFE. The best anti-wear property was obtained with the composite containing 2 wt.% CNFs. The wear volume loss of the composite contained 2 wt.% CNFs was only about 1/700 that of PTFE without CNFs under the condition of 150N and 1.4m/s. Meanwhile, the results also indicate that the mechanical properties of CNF/PTFE composites increased then decreased with the increasing filler concentration, and the composite contained 1 wt.% CNFs has the best mechanical properties. Compare to pure PTFE, the tensile strength and the elongation of CNF/PTFE composites increased about 20% and 70% respectively when the filler content is 1 wt.%. It was seen from the worn surfaces micrographs of PTFE and CNF/PTFE composites that CNFs greatly reduce the adhesive wear of PTFE.


An investigational analysis was conducted to study the effect of basalt/curaua hybrid composite focusing on wear properties. The hybrid composites are fabricated by resin transfer molding and the tests are conducted by pin on disk as per ASTM G99. Basalt/Curaua relative fiber weight percentage as 0/100,40/60, 60/40, 100/0 are fabricated and analyzed for abrasion wear resistance. Specimens are tested for the load of 50N at 1 m/s using Pin on Disc wear testing machine by varying abrading distance. Worn out surfaces of the abraded composites are studied by using scanning electron microscopy (SEM) and Fourier- transform infrared spectroscopy (FTIR). Roughness of the worn and pure surfaces is also accounted to measure significance of hybridization on tribological properties of the hybrid composites. Result shows that coefficient of friction is increasing in higher the curaua fiber in hybrid composites. Morphology evident the wear mechanism and internal compatibility of hybrid fibers.


Author(s):  
M. Vijaya ◽  
K. Srinivas ◽  
N.B.Prakash Tiruveedula

Using stir-casting, the hybrid aluminium metal matrix composites are prepared with the reinforcement of SiC and graphite particulates by varying equally 2%, 4%, 6%, and 8% by weight. The wear and frictional force for the prepared specimens were investigated through pin on disc wear testing machine. Exercising ANOVA technique, the wear rate and coefficient of friction was accomplished with the impact of applied load, sliding speed and sliding distance. Using Taguchi technique, experiments have been performed depending on the design of experiments. For analysis of data L9 Orthogonal array was preferred. Wear resistance and frictional force were influenced majorly with the reinforcement of graphite. The morphology of the depleted surfaces and the wear fragments were analysed to recognize the wear property. Distinguished to other percentages of reinforcements, 6% wt. of SiC and 6% wt. of graphite has demonstrated high wear resistance.


Sign in / Sign up

Export Citation Format

Share Document