scholarly journals Formation and Application of High Reflectivity Controllable Barium Sulfate Microspheres

Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 333 ◽  
Author(s):  
Yuejiao Liu ◽  
Xiaoyan Guo ◽  
Qingyang Gu ◽  
Guangxiang He ◽  
Suohe Yang ◽  
...  

This paper investigated the influence of reaction conditions on particle morphology. X-ray powder diffraction (XRD), particle size distribution (PSD), and scanning electron microscopy (SEM) were used to characterize the morphology of barium sulfate. The barium sulfate microspheres were synthesized with BaCl2, Na2SO4, and ethylenediaminetetraacetic acid disodium (EDTA·2Na). The reflectivity of the synthesized barium sulfate microspheres was greater than 99% in the range of 400–700 nm, which was characterized by a reflectance spectrometer. The morphology of the barium sulfate particles and their cross-section were observed by SEM. The prepared microspheres were applied to high-density lipoprotein dry tablets due to their high reflectivity, and the results showed that the prepared tablets had high sensitivity and good repeatability.

Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Claudia Maria Simonescu ◽  
Valentin Serban Teodorescu ◽  
Camelia Capatina

This paper presents the obtaining of copper sulfide CuS (covelite) from Cu(CH3COO)2.H2O and thioacetamide (TAA) system. The reaction was conducted in presence or absence of sodium-bis(2-ethylhexyl) sulfosuccinate (Na-AOT). The effects of various reaction parameters on the size and on the shape of nanoparticles have been examined. CuS obtained was characterized by X ray diffraction, IR spectroscopy, TEM � transmission electron microscopy and SAED selected area electron diffraction. The influence of surfactant to the shape and size of CuS (covellite) nanocrystals was established. The size of the nanocrystals varied from 10-60 nm depending on the reaction conditions such as quantity of surfactant.


2019 ◽  
Vol 17 (3) ◽  
pp. 270-277 ◽  
Author(s):  
Thomas F. Whayne

The non-traditional cardiovascular (CV) risk factors that appear to be of most clinical interest include: apolipoprotein A (ApoA), apolipoprotein B (ApoB), high-sensitivity C-Reactive protein (hsCRP), homocysteine, interleukin 1 (IL1), lipoprotein (a) [Lp(a)], the density of low-density lipoprotein (LDL) particles, the LDL particle number, tissue/tumor necrosis factor-α (TNF-α) and uric acid. These non-traditional risk factors may be of value in adding further confirmation and attention to suspected significant CV risk. They can also provide a better understanding of current concepts of atherogenesis (e.g. various potential mechanisms associated with inflammation) as an etiology and in guiding current plus future therapies. In the mid-20th century, atherosclerosis and CV disease were considered mechanistic occurrences with essentially no attention to possible metabolic and molecular etiologies. Therefore, the only treatments then centered around mainly surgical procedures to try to improve blood flow, first with peripheral arterial disease (PAD) and later coronary artery disease (CAD). Now, failure to treat CV risk factors, especially where there is good evidence-based medicine, as in the case of statins for high CV risk patients, is considered medical negligence. Nevertheless, many problems remain to be solved regarding atherosclerosis prevention and treatment.


2018 ◽  
Vol 15 (3) ◽  
pp. 380-387
Author(s):  
Xia Zhao ◽  
Xiaoyu Lu ◽  
Lipeng Zhang ◽  
Tianjiao Li ◽  
Kui Lu

Aim and Objective: Pyrazolone sulfones have been reported to exhibit herbicidal and antibacterial activities. In spite of their good bioactivities, only a few methods have been developed to prepare pyrazolone sulfones. However, the substrate scope of these methods is limited. Moreover, the direct sulfonylation of pyrazolone by aryl sulfonyl chloride failed to give pyrazolone sulfones. Thus, developing a more efficient method to synthesize pyrazolone sulfones is very important. Materials and Method: Pyrazolone, aryl sulphonyl hydrazide, iodine, p-toluenesulphonic acid and water were mixed in a sealed tube, which was heated to 100°C for 12 hours. The mixture was cooled to 0°C and m-CPBA was added in batches. The mixture was allowed to stir for 30 min at room temperature. The crude product was purified by silica gel column chromatography to afford sulfuryl pyrazolone. Results: In all cases, the sulfenylation products were formed smoothly under the optimized reaction conditions, and were then oxidized to the corresponding sulfones in good yields by 3-chloroperoxybenzoic acid (m-CPBA) in water. Single crystal X-ray analysis of pyrazolone sulfone 4aa showed that the major tautomer of pyrazolone sulfones was the amide form instead of the enol form observed for pyrazolone thioethers. Moreover, the C=N double bond isomerized to form an α,β-unsaturated C=C double bond. Conclusion: An efficient method to synthesize pyrazolone thioethers by iodine-catalyzed sulfenylation of pyrazolones with aryl sulfonyl hydrazides in water was developed. Moreover, this method was employed to synthesize pyrazolone sulfones in one-pot by subsequent sulfenylation and oxidation reactions.


2021 ◽  
Vol 19 (1) ◽  
pp. 745-754
Author(s):  
Khoirina Dwi Nugrahaningtyas ◽  
Eddy Heraldy ◽  
Rachmadani ◽  
Yuniawan Hidayat ◽  
Indriana Kartini

Abstract The properties of three types of CoMo/USY catalysts with different synthesized methods have been studied. The sequential and co-impregnation methods followed by activation using calcination and reduction process have been conducted. The properties of the catalysts were examined using Fourier-transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) with refinement, and surface area analyzer (SAA). The FTIR spectrum study revealed the enhanced intensity of its Bronsted acid site, and the XRD diffractogram pattern verified the composition of pure metals, oxides, and alloys in the catalyst. The SAA demonstrated the mesoporous features of the catalyst. Scanning electron microscopy showed an irregular particle morphology. Additional analysis using the transmission electron microscopy indicated that the metal has successfully impregnated without damaging the USY structure.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4097
Author(s):  
Wooyong Seong ◽  
Hyungwoo Hahm ◽  
Seyong Kim ◽  
Jongwoo Park ◽  
Khalil A. Abboud ◽  
...  

Bimetallic bis-urea functionalized salen-aluminum catalysts have been developed for cyclic carbonate synthesis from epoxides and CO2. The urea moiety provides a bimetallic scaffold through hydrogen bonding, which expedites the cyclic carbonate formation reaction under mild reaction conditions. The turnover frequency (TOF) of the bis-urea salen Al catalyst is three times higher than that of a μ-oxo-bridged catalyst, and 13 times higher than that of a monomeric salen aluminum catalyst. The bimetallic reaction pathway is suggested based on urea additive studies and kinetic studies. Additionally, the X-ray crystal structure of a bis-urea salen Ni complex supports the self-assembly of the bis-urea salen metal complex through hydrogen bonding.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander Ulyanov ◽  
Dmitrii Stolbov ◽  
Serguei Savilov

Abstract Jellyfish-like graphene nanoflakes (GNF), prepared by hydrocarbon pyrolysis, are studied with electron paramagnetic resonance (EPR) method. The results are supported by X-ray photoelectron spectroscopy (XPS) data. Oxidized (GNFox) and N-doped oxidized (N-GNFox) flakes exhibit an extremely high EPR response associated with a large interlayer interaction which is caused by the structure of nanoflakes and layer edges reached by oxygen. The GNFox and N-GNFox provide the localized and mobile paramagnetic centers which are silent in the pristine (GNF p ) and N-doped (N-GNF) samples. The change in the relative intensity of the line corresponding to delocalized electrons is parallel with the number of radicals in the quaternary N-group. The environment of localized and mobile electrons is different. The results can be important in GNF synthesis and for explanation of their features in applications, especially, in devices with high sensitivity to weak electromagnetic field.


2021 ◽  
Vol 11 (9) ◽  
pp. 4233
Author(s):  
Biprodip Pal ◽  
Debashis Gupta ◽  
Md. Rashed-Al-Mahfuz ◽  
Salem A. Alyami ◽  
Mohammad Ali Moni

The COVID-19 pandemic requires the rapid isolation of infected patients. Thus, high-sensitivity radiology images could be a key technique to diagnose patients besides the polymerase chain reaction approach. Deep learning algorithms are proposed in several studies to detect COVID-19 symptoms due to the success in chest radiography image classification, cost efficiency, lack of expert radiologists, and the need for faster processing in the pandemic area. Most of the promising algorithms proposed in different studies are based on pre-trained deep learning models. Such open-source models and lack of variation in the radiology image-capturing environment make the diagnosis system vulnerable to adversarial attacks such as fast gradient sign method (FGSM) attack. This study therefore explored the potential vulnerability of pre-trained convolutional neural network algorithms to the FGSM attack in terms of two frequently used models, VGG16 and Inception-v3. Firstly, we developed two transfer learning models for X-ray and CT image-based COVID-19 classification and analyzed the performance extensively in terms of accuracy, precision, recall, and AUC. Secondly, our study illustrates that misclassification can occur with a very minor perturbation magnitude, such as 0.009 and 0.003 for the FGSM attack in these models for X-ray and CT images, respectively, without any effect on the visual perceptibility of the perturbation. In addition, we demonstrated that successful FGSM attack can decrease the classification performance to 16.67% and 55.56% for X-ray images, as well as 36% and 40% in the case of CT images for VGG16 and Inception-v3, respectively, without any human-recognizable perturbation effects in the adversarial images. Finally, we analyzed that correct class probability of any test image which is supposed to be 1, can drop for both considered models and with increased perturbation; it can drop to 0.24 and 0.17 for the VGG16 model in cases of X-ray and CT images, respectively. Thus, despite the need for data sharing and automated diagnosis, practical deployment of such program requires more robustness.


2021 ◽  
Vol 22 (7) ◽  
pp. 3691
Author(s):  
Oliver Schmutzler ◽  
Sebastian Graf ◽  
Nils Behm ◽  
Wael Y. Mansour ◽  
Florian Blumendorf ◽  
...  

Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.


Sign in / Sign up

Export Citation Format

Share Document