scholarly journals Prediction of Vehicle Crashworthiness Parameters Using Piecewise Lumped Parameters and Finite Element Models

Designs ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 43 ◽  
Author(s):  
Bernard B. Munyazikwiye ◽  
Dmitry Vysochinskiy ◽  
Mikhail Khadyko ◽  
Kjell G. Robbersmyr

Estimating the vehicle crashworthiness experimentally is expensive and time-consuming. For these reasons, different modelling approaches are utilised to predict the vehicle behaviour and reduce the need for full-scale crash testing. The earlier numerical methods used for vehicle crashworthiness analysis were based on the use of lumped parameters models (LPM), a combination of masses and nonlinear springs interconnected in various configurations. Nowadays, the explicit nonlinear finite element analysis (FEA) is probably the most widely recognised modelling technique. Although informative, finite element models (FEM) of vehicle crash are expensive both in terms of man-hours put into assembling the model and related computational costs. A simpler analytical tool for preliminary analysis of vehicle crashworthiness could greatly assist the modelling and save time. In this paper, the authors investigate whether a simple piecewise LPM can serve as such a tool. The model is first calibrated at an impact velocity of 56 km/h. After the calibration, the LPM is applied to a range of velocities (40, 48, 64 and 72 km/h) and the crashworthiness parameters such as the acceleration severity index (ASI) and the maximum dynamic crush are calculated. The predictions for crashworthiness parameters from the LPM are then compared with the same predictions from the FEA.

Author(s):  
Bernard B. Munyazikwiye ◽  
Dmitry Vysochinskiy ◽  
Mikhail Khadyko ◽  
Kjell G. Robbersmyr

Estimating the vehicle crashworthiness parameters experimentally is expensive and time consuming. For these reasons different modelling approaches are utilized to predict the vehicle behaviour and reduce the need for full-scale crash testing. The earlier numerical methods used for vehicle crashworthiness analysis were based on the use of lumped parameters models (LPM), a combination of masses and nonlinear springs interconnected in various configurations. Nowadays, the explicit nonlinear finite element analysis (FEA) is probably the most widely recognized modelling technique. Although informative, finite element models (FEM) of vehicle crash are expensive both in terms of man-hours put into assembling the model and related computational costs. A simpler analytical tool for early analysis of vehicle crashworthiness could greatly assist the modelling and save time. In this paper a simple piecewise LPM composed of a mass-spring-damper system, is used to estimate the vehicle crashworthiness parameters, focusing on the dynamic crush and the acceleration severity index (ASI). The model is first calibrated against a full-scale crash test and a FEM, post-processed with the LS-DYNA software, at an impact velocity of 56 km/h. The genetic algorithm is used to calibrate the model by estimating the piecewise lumped parameters (stiffness and damping of the front structure of the vehicle). After calibration, the LPM is applied to a range of velocities (40, 48, 64 and 72 km/h). The predictions for crashworthiness parameters from the LPM were compared with the predictions from the FEA and the results are much similar. It is shown that the LPM can assist in crash analysis, since LPM has some predictive capabilities and requires less computation time in comparison with the explicit nonlinear FEA.


1988 ◽  
Vol 16 (1) ◽  
pp. 18-43 ◽  
Author(s):  
J. T. Oden ◽  
T. L. Lin ◽  
J. M. Bass

Abstract Mathematical models of finite deformation of a rolling viscoelastic cylinder in contact with a rough foundation are developed in preparation for a general model for rolling tires. Variational principles and finite element models are derived. Numerical results are obtained for a variety of cases, including that of a pure elastic rubber cylinder, a viscoelastic cylinder, the development of standing waves, and frictional effects.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zewen Shi ◽  
Lin Shi ◽  
Xianjun Chen ◽  
Jiangtao Liu ◽  
Haihao Wu ◽  
...  

Abstract Background The superior facet arthroplasty is important for intervertebral foramen microscopy. To our knowledge, there is no study about the postoperative biomechanics of adjacent L4/L5 segments after different methods of S1 superior facet arthroplasty. To evaluate the effect of S1 superior facet arthroplasty on lumbar range of motion and disc stress of adjacent segment (L4/L5) under the intervertebral foraminoplasty. Methods Eight finite element models (FEMs) of lumbosacral vertebrae (L4/S) had been established and validated. The S1 superior facet arthroplasty was simulated with different methods. Then, the models were imported into Nastran software after optimization; 500 N preload was imposed on the L4 superior endplate, and 10 N⋅m was given to simulate flexion, extension, lateral flexion and rotation. The range of motion (ROM) and intervertebral disc stress of the L4-L5 spine were recorded. Results The ROM and disc stress of L4/L5 increased with the increasing of the proportions of S1 superior facet arthroplasty. Compared with the normal model, the ROM of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 2/5 from the apex to the base. The disc stress of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 1/5 from the apex to the base. Conclusion In this study, the ROM and disc stress of L4/L5 were affected by the unilateral S1 superior facet arthroplasty. It is suggested that the forming range from the ventral to the dorsal should be less than 3/5 of the S1 upper facet joint. It is not recommended to form from apex to base. Level of evidence Level IV


Author(s):  
R. Villavicencio ◽  
Bin Liu ◽  
Kun Liu

The paper summarises observations of the fracture response of small-scale double hull specimens subjected to quasi-static impact loads by means of simulations of the respective experiments. The collision scenarios are used to evaluate the discretisation of the finite element models, and the energy-responses given by various failure criteria commonly selected for collision assessments. Nine double hull specimens are considered in the analysis so that to discuss the advantages and disadvantages of the different failure criterion selected for the comparison. Since a large scatter is observed from the numerical results, a discussion on the reliability of finite element analysis is also provided based on the present study and other research works found in the literature.


2017 ◽  
Vol 54 (1) ◽  
pp. 180-179 ◽  
Author(s):  
Raul Cormos ◽  
Horia Petrescu ◽  
Anton Hadar ◽  
Gorge Mihail Adir ◽  
Horia Gheorghiu

The main purpose of this paper is the study the behavior of four multilayered composite material configurations subjected to different levels of low velocity impacts, in the linear elastc domain of the materials, using experimental testing and finite element simulation. The experimental results obtained after testing, are used to validate the finite element models of the four composite multilayered honeycomb structures, which makes possible the study, using only the finite element method, of these composite materials for a give application.


Author(s):  
Naveen Viswanatha ◽  
Mark Avis ◽  
Moji Moatamedi

The surround and the spider of the loudspeaker suspension are modelled in ANSYS to carry out finite element analysis. The displacement dependent nonlinearities arising from the suspension are studied and the material and geometric effects leading to the nonlinearities are parameterised. The ANSYS models are simulated to be excited by a sinusoidal load and the results are evaluated by comparison with the results obtained by a physical model. The paper illustrates how practical models can be analysed using cost effective finite element models and also the extension of the models to experiment on various parameters, like changing the geometry for optimisation, by computer simulation.


2013 ◽  
Vol 22 (6) ◽  
pp. 096369351302200
Author(s):  
S.K. Jalan ◽  
B. Nageswara Rao ◽  
S. Gopalakrishnan

Finite element analysis has been performed to study vibrational characteristics of cantilever single walled carbon nanotubes. Finite element models are generated by specifying the C-C bond rigidities, which are estimated by equating energies from molecular mechanics and continuum mechanics. Bending, torsion, and axial modes are identified based on effective mass for armchair, zigzag and chiral cantilever single walled carbon nanotubes, whose Young's modulus is evaluated from the bending frequency. Empirical relations are provided for frequencies of bending, torsion, and axial modes.


2014 ◽  
Vol 496-500 ◽  
pp. 590-593
Author(s):  
Guan Nan Chu ◽  
Qing Yong Zhang ◽  
Guo Chun Lu

In order to improve the load-carrying properties of pressure structure, a new method to improve the external bearing limit is put forward and residual stress is used. Based on finite element analysis, finite element models of cylinder pressure structure of submersible vehicle are established to produce hoop residual stress in the process of outward expansion. According to a lot of data of simulation experiments, the result indicates that hoop residual stress is compressive on the outer surface of the pipe and the hoop stress keeps tensile on the inside surface. This kind of stress distribution is helpful to the cylinder structure and can improve its bearing capacity of external pressure. Moreover, the rules of the residual stress are got. The influences of physical dimension, yield strength of material and the expansion rate to the stress distribution are analyzed. The measures to produce the stress distribution are also presented.


Author(s):  
Qiaoling Meng ◽  
Giovanni Berselli ◽  
Rocco Vertechy ◽  
Vincenzo Parenti Castelli

Monolithic Flexure-based Compliant Mechanisms (MFCM) can functionally act as nonlinear springs by providing a desired load-displacement profile at one point on their structure. Once the MFCM topology is chosen, these particular springs can be conveniently synthesized by resorting to the well-known Pseudo-Rigid-Body approximation, whose accuracy strongly depends on the modeling precision of the flexures’ principal compliance. For various types of flexures, closed-form solutions have been proposed which express the compliance factors as functions of the flexure dimensions. Nonetheless, the reliability of these analytical relations is limited to slender, beam-like, hinges undergoing small deflections. In order to overcome such limitations, this paper provides empirical equations, derived from finite element analysis, that can be used for the optimal design of circular, elliptical, and corner-filleted flexural hinges with general aspect ratios on the basis of both principal compliance and maximum bearable stress. As a case study, a nonlinear spring conceived as a four-bar linkage MFCM is synthesized and simulated by means of finite element analysis. Numerical results confirm that the aforementioned empirical equations outperform their analytical counterparts when modeling thick cross-section hinges undergoing large deflections.


2008 ◽  
Vol 392-394 ◽  
pp. 879-883
Author(s):  
Hui Xia Liu ◽  
H. Yan ◽  
Xiao Wang ◽  
Shu Bin Lu ◽  
K. Yang ◽  
...  

Two 3-D finite element models of coated tool and uncoated tool were established using the finite element code DEFORM-2D based on the updated Lagrangian formula. And their machinability on high speed orthogonal machining was simulated and compared. The investigation results indicate that the coated tool has higher surface temperature and lower inside temperature compared with the uncoated tool. Moreover, the cutting forces of the model using coated tool are lower than that using uncoated tool.


Sign in / Sign up

Export Citation Format

Share Document