scholarly journals A Photon Force and Flow for Dissipative Structuring: Application to Pigments, Plants and Ecosystems

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 76
Author(s):  
Karo Michaelian ◽  
Ramón Eduardo Cano Mateo

Through a modern derivation of Planck’s formula for the entropy of an arbitrary beam of photons, we derive a general expression for entropy production due to the irreversible process of the absorption of an arbitrary incident photon spectrum in material and its dissipation into an infrared-shifted grey-body emitted spectrum, with the rest being reflected or transmitted. Employing the framework of Classical Irreversible Thermodynamic theory, we define the generalized thermodynamic flow as the flow of photons from the incident beam into the material and the generalized thermodynamic force is, then, the entropy production divided by the photon flow, which is the entropy production per unit photon at a given wavelength. We compare the entropy production of different inorganic and organic materials (water, desert, leaves and forests) under sunlight and show that organic materials are the greater entropy-producing materials. Intriguingly, plant and phytoplankton pigments (including chlorophyll) reach peak absorption exactly where entropy production through photon dissipation is maximal for our solar spectrum 430<λ<550 nm, while photosynthetic efficiency is maximal between 600 and 700 nm. These results suggest that the evolution of pigments, plants and ecosystems has been towards optimizing entropy production, rather than photosynthesis. We propose using the wavelength dependence of global entropy production as a biosignature for discovering life on planets of other stars.

Author(s):  
Karo Michaelian ◽  
Ramon Eduardo Cano Mateo

Through a modern derivation of Planck's formula for the entropy of an arbitrary beam of photons we derive a general expression for the entropy production due to the irreversible process of the absorption of an arbitrary incident photon spectrum in material and its dissipation into an infrared-shifted grey-body emitted spectrum, the rest being reflected or transmitted. Employing the framework of Classical Irreversible Thermodynamic theory, we define the generalized thermodynamic flow as the flow of photons from the incident beam into the material and the generalized thermodynamic force is then just the entropy production divided by the photon flow which is the entropy production per unit photon at a given wavelength. We compare the entropy production under sunlight of different inorganic and organic materials (water, desert, leaves and forests) and show that organic materials are the greater entropy producing materials. Intriguingly, plant and phytoplankton pigments (including chlorophyll) have peak absorption exactly where entropy production through photon dissipation is maximal for our solar spectrum $430&lt;\lambda&lt;550$ nm, while photosynthetic efficiency is maximal between 600 and 700 nm. These results suggest that the evolution of pigments, plants and ecosystems has been towards optimizing entropy production rather than photosynthesis. We propose using the wavelength dependence of global entropy production as a biosignature for discovering life on planets of other stars.


Author(s):  
Andre Cardoso Barato ◽  
Taylor Wampler

Abstract The thermodynamic uncertainty relation is a prominent result in stochastic thermodynamics that provides a bound on the fluctuations of any thermodynamic flux, also known as current, in terms of the average rate of entropy production. Such fluctuations are quantified by the second moment of the probability distribution of the current. The role of higher order standardized moments such as skewness and kurtosis remains largely unexplored. We analyze the skewness and kurtosis associated with the first passage time of thermodynamic currents within the framework of stochastic thermodynamics. We develop a method to evaluate higher order standardized moments associated with the first passage time of any current. For systems with a unicyclic network of states, we conjecture upper and lower bounds on skewness and kurtosis associated with entropy production. These bounds depend on the number of states and the thermodynamic force that drives the system out of equilibrium. We show that these bounds for skewness and kurtosis do not hold for multicyclic networks. We discuss the application of our results to infer an underlying network of states.


1968 ◽  
Vol 12 ◽  
pp. 496-505 ◽  
Author(s):  
R. D. Davies ◽  
H. K. Herglotz

AbstractA novel x-ray spectrograph for the analysis of light elements has been developed based on previous computations and confirming experiments by one of as (H. K. Herglotz). The major components of the instrument are an efficient fluorescent source, a totally reflecting mirror, and an open window photomultiplier. Identification of wavelengths in the range 15 < λ < 80 Å is achieved by the wavelength dependence of the critical angle of reflection of an x-ray beam incident on a suitably chosen low absorption reflector. As the incident angle is increased through the critical angle for a particular wavelength, the reflected beam intensity is sharply reduced; hence, a periodic vibration of the incident beam through a small angular range about the critical angle furnishes a strong a.c. reflected signal characteristic of one narrow wavelength band only.Initial results promise a simple, easy-to-operate instrument for the routine analysis of elements boron to fluorine.


2012 ◽  
Vol 560-561 ◽  
pp. 140-144
Author(s):  
Yuan Zhen Cai

Based on the irreversible thermodynamics, a irreversible thermodynamic description of domain occurrences in ferroics such as ferroelectrics, ferromagnetics and ferroelastics was given. The ferroic domain structures occur at the ferroic phase transitions from the prototype phases to the ferroic phases. The processes of transition are stationary state processes so that the principle of minimum entropy production is satisfied. The domain occurrences are a consequence of this principle. The time-spatial symmetry related to the domains and their occurrences was also expounded.


2021 ◽  
Author(s):  
Lars Olof Björn

Abstract. This is a comment to: “Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum” by K. Michaelian and A. Simeonov, Biogeosciences, 12, 4913–4937, 2015. Michaelian and Simeonov formulate the leading thought in their article “The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate”. I doubt that the reasoning that follows regarding the role of “pigments” (in which they include all substances able to absorb solar radiation) is correct.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sreekanth K. Manikandan ◽  
Subhrokoli Ghosh ◽  
Avijit Kundu ◽  
Biswajit Das ◽  
Vipin Agrawal ◽  
...  

AbstractEstimating entropy production directly from experimental trajectories is of great current interest but often requires a large amount of data or knowledge of the underlying dynamics. In this paper, we propose a minimal strategy using the short-time Thermodynamic Uncertainty Relation (TUR) by means of which we can simultaneously and quantitatively infer the thermodynamic force field acting on the system and the (potentially exact) rate of entropy production from experimental short-time trajectory data. We benchmark this scheme first for an experimental study of a colloidal particle system where exact analytical results are known, prior to studying the case of a colloidal particle in a hydrodynamical flow field, where neither analytical nor numerical results are available. In the latter case, we build an effective model of the system based on our results. In both cases, we also demonstrate that our results match with those obtained from another recently introduced scheme.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1510
Author(s):  
Yves Lecarpentier ◽  
Vincent Kindler ◽  
Xénophon Krokidis ◽  
Marie-Luce Bochaton-Piallat ◽  
Victor Claes ◽  
...  

Mesenchymal stromal cells (MSCs) were obtained from human bone marrow and amplified in cultures supplemented with human platelet lysate. Once semi-confluent, cells were seeded in solid collagen scaffolds that were rapidly colonized by the cells generating a 3D cell scaffold. Here, they acquired a myofibroblast phenotype and when exposed to appropriate chemical stimulus, developed tension and cell shortening, similar to those of striated and smooth muscle cells. Myofibroblasts contained a molecular motor—the non-muscle myosin type IIA (NMMIIA) whose crossbridge (CB) kinetics are dramatically slow compared with striated and smooth muscle myosins. Huxley’s equations were used to determine the molecular mechanical properties of NMMIIA. Thank to the great number of NMMIIA molecules, we determined the statistical mechanics (SM) of MSCs, using the grand canonical ensemble which made it possible to calculate various thermodynamic entities such as the chemical affinity, statistical entropy, internal energy, thermodynamic flow, thermodynamic force, and entropy production rate. The linear relationship observed between the thermodynamic force and the thermodynamic flow allowed to establish that MSC-laden in collagen scaffolds were in a near-equilibrium stationary state (affinity ≪ RT), MSCs were also seeded in solid collagen scaffolds functionalized with the tripeptide Arg-Gly-Asp (RGD). This induced major changes in NMMIIA SM particularly by increasing the rate of entropy production. In conclusion, collagen scaffolds laden with MSCs can be viewed as a non-muscle contractile bioengineered tissue operating in a near-equilibrium linear regime, whose SM could be substantially modified by the RGD peptide.


Author(s):  
Zhendong Dai

Friction and wear are typical irreversible processes. Friction irreversibly degrades and dissipates high quality energy and wear irreversibly removes materials from the load-carrying surface. The two irreversible processes can be presented by entropy production, which is a non-negative quantity based on irreversible thermodynamics and thus serves as a basis for the systematic description of irreversible processes occurring in tribological system. In this paper, a thermodynamic framework has been presented for the mechanisms of friction and wear of continuum materials, where entropy production is used as the sole measure of energy dissipation and material damage evolution in the system. As a result, there is no need for physically meaningless empirical parameters to define the phenomenological frictional and wear parameters to trace tribological evolution in a friction and wear system. To validate the model, predictions are compared with experimental results, which indicate that entropy production can be used as a friction and wear evolution metric. The theory is founded on the basic premise that a solid continuum obeys the first and second laws of thermodynamics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. Ahmadi ◽  
S. Salimi ◽  
A. S. Khorashad

AbstractThe second law of classical equilibrium thermodynamics, based on the positivity of entropy production, asserts that any process occurs only in a direction that some information may be lost (flow out of the system) due to the irreversibility inside the system. However, any thermodynamic system can exhibit fluctuations in which negative entropy production may be observed. In particular, in stochastic quantum processes due to quantum correlations and also memory effects we may see the reversal energy flow (heat flow from the cold system to the hot system) and the backflow of information into the system that leads to the negativity of the entropy production which is an apparent violation of the Second Law. In order to resolve this apparent violation, we will try to properly extend the Second Law to quantum processes by incorporating information explicitly into the Second Law. We will also provide a thermodynamic operational meaning for the flow and backflow of information. Finally, it is shown that negative and positive entropy production can be described by a quantum thermodynamic force.


2016 ◽  
Vol 7 (2) ◽  
pp. 167-176
Author(s):  
Yangyu Guo ◽  
Moran Wang

AbstractIn this paper, a generalized heat transport equation including relaxational, nonlocal and nonlinear effects is provided, which contains diverse previous phenomenological models as particular cases. The aim of the present work is to establish an extended irreversible thermodynamic framework, with generalized expressions of entropy and entropy flux. Nonlinear thermodynamic force-flux relation is proposed as an extension of the usual linear one, giving rise to the nonlinear terms in the heat transport equation and ensuring compatibility with the second law. Several previous results are recovered in the linear case, and some additional results related to nonlinear terms are also obtained.


Sign in / Sign up

Export Citation Format

Share Document