scholarly journals Analysis of Possible Physical Factors That Accelerate Downdrafts in Storm Clouds over Cuba

2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Gleisis Alvarez-Socorro ◽  
Mario Carnesoltas-Calvo ◽  
Alis Varela-de la Rosa ◽  
José C. Fernández-Alvarez

One of the manifestations of severe local storms is strong linear winds, which are known as a downburst and which are capable of causing great losses to the country’s economy and society. Knowing which factors in the atmosphere are necessary for the occurrence of this phenomenon is essential for its better understanding and prediction. The objective of this study was to analyze the possible physical factors that accelerate downdrafts in the storm clouds in Cuba. To do so, 10 study cases simulated with the weather research and forecasting (WRF) model at 3 km of the spatial resolution were used. The factors capable of discriminating between downbursts and thunderstorms without severity were obtained. These were the absorption of latent heat by evaporation and fusion, the equivalent potential temperature difference between the level of maximum relative humidity in the low levels and of minimum relative humidity in the middle levels, the speed of the downdraft, and the downdraft available convective potential energy (DCAPE). Unlike previous research, they discriminated against updraft buoyancy and energy advection, both at the middle levels of the troposphere.

2019 ◽  
Vol 147 (7) ◽  
pp. 2329-2354 ◽  
Author(s):  
Stacey M. Hitchcock ◽  
Russ S. Schumacher ◽  
Gregory R. Herman ◽  
Michael C. Coniglio ◽  
Matthew D. Parker ◽  
...  

Abstract During the Plains Elevated Convection at Night (PECAN) field campaign, 15 mesoscale convective system (MCS) environments were sampled by an array of instruments including radiosondes launched by three mobile sounding teams. Additional soundings were collected by fixed and mobile PECAN integrated sounding array (PISA) groups for a number of cases. Cluster analysis of observed vertical profiles established three primary preconvective categories: 1) those with an elevated maximum in equivalent potential temperature below a layer of potential instability; 2) those that maintain a daytime-like planetary boundary layer (PBL) and nearly potentially neutral low levels, sometimes even well after sunset despite the existence of a southerly low-level wind maximum; and 3) those that are potentially neutral at low levels, but have very weak or no southerly low-level winds. Profiles of equivalent potential temperature in elevated instability cases tend to evolve rapidly in time, while cases in the potentially neutral categories do not. Analysis of composite Rapid Refresh (RAP) environments indicate greater moisture content and moisture advection in an elevated layer in the elevated instability cases than in their potentially neutral counterparts. Postconvective soundings demonstrate significantly more variability, but cold pools were observed in nearly every PECAN MCS case. Following convection, perturbations range between −1.9 and −9.1 K over depths between 150 m and 4.35 km, but stronger, deeper stable layers lead to structures where the largest cold pool temperature perturbation is observed above the surface.


2016 ◽  
Vol 73 (5) ◽  
pp. 1857-1870 ◽  
Author(s):  
Agnieszka A. Mrowiec ◽  
Olivier M. Pauluis ◽  
Fuqing Zhang

Abstract Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.


2020 ◽  
Vol 77 (6) ◽  
pp. 2011-2037 ◽  
Author(s):  
Melissa kazemirad ◽  
Mark A. Miller

Abstract Marine boundary layer (MBL) cloud morphology associated with two summertime cold fronts over the eastern North Atlantic (ENA) is investigated using high-resolution simulations from the Weather Research and Forecasting (WRF) Model and observations from the Atmospheric Radiation Measurement (ARM) ENA Climate Research Facility. Lagrangian trajectories are used to study the evolution of post-cold-frontal MBL clouds from solid stratocumulus to broken cumulus. Clouds within specified domains in the vicinity of transitions are classified according to their degree of decoupling, and cloud-base and cloud-top breakup processes are evaluated. The Lagrangian derivative of the surface latent heat flux is found to be strongly correlated with that of the cloud fraction at cloud base in the simulations. Cloud-top entrainment instability (CTEI) is shown to operate only in the decoupled MBL. A new indicator of inversion strength at cloud top that employs the vertical gradients of equivalent potential temperature and saturation equivalent potential temperature, which can be computed directly from soundings, is proposed as an alternative to CTEI. Overall, results suggest that the deepening–warming hypothesis suggested by Bretherton and Wyant explains many of the characteristics of the summertime postfrontal MBL evolution of cloud structure over the ENA, thereby widening the phase space over which the hypothesis may be applied. A subset of the deepening–warming hypothesis involving warming initially dominating over moistening is proposed. It is postulated that changes in climate change–induced modifications in cold-frontal structure over the ENA may be accompanied by coincident changes in the location and timing of MBL cloud transitions in the post-cold-frontal environment.


2019 ◽  
Vol 100 (5) ◽  
pp. 873-895 ◽  
Author(s):  
Carl M. Thomas ◽  
David M. Schultz

AbstractFronts can be computed from gridded datasets such as numerical model output and reanalyses, resulting in automated surface frontal charts and climatologies. Defining automated fronts requires quantities (e.g., potential temperature, equivalent potential temperature, wind shifts) and kinematic functions (e.g., gradient, thermal front parameter, and frontogenesis). Which are the most appropriate to use in different applications remains an open question. This question is investigated using two quantities (potential temperature and equivalent potential temperature) and three functions (magnitude of the horizontal gradient, thermal front parameter, and frontogenesis) from both the context of real-time surface analysis and climatologies from 38 years of reanalyses. The strengths of potential temperature to identify fronts are that it represents the thermal gradients and its direct association with the kinematics and dynamics of fronts. Although climatologies using potential temperature show features associated with extratropical cyclones in the storm tracks, climatologies using equivalent potential temperature include moisture gradients within air masses, most notably at low latitudes that are unrelated to the traditional definition of a front, but may be representative of a broader definition of an airmass boundary. These results help to explain previously published frontal climatologies featuring maxima of fronts in the subtropics and tropics. The best function depends upon the purpose of the analysis, but Petterssen frontogenesis is attractive, both for real-time analysis and long-term climatologies, in part because of its link to the kinematics and dynamics of fronts. Finally, this study challenges the conventional definition of a front as an airmass boundary and suggests that a new, dynamically based definition would be useful for some applications.


2015 ◽  
Vol 72 (9) ◽  
pp. 3639-3646 ◽  
Author(s):  
David M. Romps

Abstract For an adiabatic parcel convecting up or down through the atmosphere, it is often assumed that its moist static energy (MSE) is conserved. Here, it is shown that the true conserved variable for this process is MSE minus convective available potential energy (CAPE) calculated as the integral of buoyancy from the parcel’s height to its level of neutral buoyancy and that this variable is conserved even when accounting for full moist thermodynamics and nonhydrostatic pressure forces. In the calculation of a dry convecting parcel, conservation of MSE minus CAPE gives the same answer as conservation of entropy and potential temperature, while the use of MSE alone can generate large errors. For a moist parcel, entropy and equivalent potential temperature give the same answer as MSE minus CAPE only if the parcel ascends in thermodynamic equilibrium. If the parcel ascends with a nonisothermal mixed-phase stage, these methods can give significantly different answers for the parcel buoyancy because MSE minus CAPE is conserved, while entropy and equivalent potential temperature are not.


2007 ◽  
Vol 135 (1) ◽  
pp. 240-246 ◽  
Author(s):  
Matthew L. Grzych ◽  
Bruce D. Lee ◽  
Catherine A. Finley

Abstract Data collected during Project Analysis of the Near-Surface Wind and Environment along the Rear-flank of Supercells (ANSWERS) provided an opportunity to test recently published associations between rear-flank downdraft (RFD) thermodynamic characteristics and supercell tornadic activity on a set of 10 events from the northern plains. On average, RFDs associated with tornadic supercells had surface equivalent potential temperature and virtual potential temperature values only slightly lower than storm inflow values. RFDs associated with nontornadic supercells had mean group equivalent potential temperature and virtual potential temperature values that were colder relative to storm inflow values than their respective tornadic counterparts. Additionally, the analysis revealed that RFDs associated with tornadic supercells had higher CAPE and lower convective inhibition than the RFDs of nontornadic supercells, on average. The results of this study provide further support for the general concept that a thermodynamic delineation generally exists between the RFDs of tornadic and nontornadic supercells.


2010 ◽  
Vol 23 (11) ◽  
pp. 3077-3093 ◽  
Author(s):  
Olivier Pauluis ◽  
Arnaud Czaja ◽  
Robert Korty

Abstract Differential heating of the earth’s atmosphere drives a global circulation that transports energy from the tropical regions to higher latitudes. Because of the turbulent nature of the flow, any description of a “mean circulation” or “mean parcel trajectories” is tied to the specific averaging method and coordinate system. In this paper, the NCEP–NCAR reanalysis data spanning 1970–2004 are used to compare the mean circulation obtained by averaging the flow on surfaces of constant liquid water potential temperature, or dry isentropes, and on surfaces of constant equivalent potential temperature, or moist isentropes. While the two circulations are qualitatively similar, they differ in intensity. In the tropics, the total mass transport on dry isentropes is larger than the circulation on moist isentropes. In contrast, in midlatitudes, the total mass transport on moist isentropes is between 1.5 and 3 times larger than the mass transport on dry isentropes. It is shown here that the differences between the two circulations can be explained by the atmospheric transport of water vapor. In particular, the enhanced mass transport on moist isentropes corresponds to a poleward flow of warm moist air near the earth’s surface in midlatitudes. This low-level poleward flow does not appear in the zonally averaged circulation on dry isentropes, as it is hidden by the presence of a larger equatorward flow of drier air at same potential temperature. However, as the equivalent potential temperature in this low-level poleward flow is close to the potential temperature of the air near the tropopause, it is included in the total circulation on moist isentropes. In the tropics, the situation is reversed: the Hadley circulation transports warm moist air toward the equator, and in the opposite direction to the flow at upper levels, and the circulation on dry isentropes is larger than that on moist isentropes. The relationship between circulation and entropy transport is also analyzed. A gross stratification is defined as the ratio of the entropy transport to the net transport on isentropic surfaces. It is found that in midlatitudes the gross stability for moist entropy is approximately the same as that for dry entropy. The gross stratification in the midlatitude circulation differs from what one would expect for either an overturning circulation or horizontal mixing; rather, it confirms that warm moist subtropical air ascends into the upper troposphere within the storm tracks.


Sign in / Sign up

Export Citation Format

Share Document