scholarly journals Temperature Control Concept for Parallel IGBT Operation

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 429
Author(s):  
Andrej Brandis ◽  
Denis Pelin ◽  
Tomislav Matić ◽  
Danijel Topić

This paper addresses the concept of load balancing in the operation of parallel insulated-gate bipolar transistors (IGBTs), in which the temperature is used as the main control parameter. In parallel IGBT operation, it is essential to ensure an equal load distribution across all IGBTs. Two basic algorithm concepts for temperature control were developed for the purpose of balancing. A test model based on the parallel IGBTs operation was assembled in a laboratory and the developed algorithms were tested for the chosen parameters. MATLAB was used for final data processing. The comparison between the two implemented basic algorithms provides insights into the temperature behavior of parallel IGBTs in terms of individual IGBT’s heating and cooling trajectories and time constants. All tests were conducted without the heatsinks to obtain the worst-case scenario in terms of thermal conditions. The test results show that temperature control in the operation of parallel IGBTs is possible but limited.

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6191
Author(s):  
Seyedmilad Komarizadehasl ◽  
Behnam Mobaraki ◽  
Haiying Ma ◽  
Jose-Antonio Lozano-Galant ◽  
Jose Turmo

Nowadays, engineers are widely using accelerometers to record the vibration of structures for structural verification purposes. The main obstacle for using these data acquisition systems is their high cost, which limits its use to unique structures with a relatively high structural health monitoring budget. In this paper, a Cost Hyper-Efficient Arduino Product (CHEAP) has been developed to accurately measure structural accelerations. CHEAP is a system that is composed of five low-cost accelerometers that are connected to an Arduino microcontroller as their data acquisition system. Test results show that CHEAP not only has a significantly lower price (14 times cheaper in the worst-case scenario) compared with other systems used for comparison but also shows better accuracy on low frequencies for low acceleration amplitudes. Moreover, the final output results of Fast Fourier Transformation (FFT) assessments showed a better observable resolution for CHEAP than the studied control systems.


Author(s):  
Luis M. Serra ◽  
Miguel A. Lozano ◽  
Monica Carvalho

This paper details the calculation of the environmental loads associated with the construction of each piece of equipment (considering that the materials were not reused at the end of the equipment’s lifetime, which is the worst case scenario) and operation of a trigeneration system. The purpose of a trigeneration system is to meet the demands of a consumer center — in this case, a medium-sized hospital located in Zaragoza, Spain. The evaluation extended over a period of one year, considering previously specified energy service demands (electricity, heat - sanitary hot water and heating -, and cooling). The system interacted with the economic environment (market) through the purchase of natural gas and electricity from the grid, and also through the sale of autogenerated electricity to the grid, according to Spanish regulations. Therefore, the environmental loads regarding the operation of the system were associated with the consumption of natural gas and electricity purchased/sold from/to the grid. Technical information on each piece of equipment was obtained from catalogs and from consultation with manufacturers. Regarding natural gas, special care was taken to correctly identify the natural gas supplied to a user in Spain (it was considered that the gas comes from Algeria, transported in Liquefied Natural Gas (LNG) carriers, including pipeline transportation to the user and controlled burning). The electricity supplied by the Spanish electric grid was also properly specified and characterized. The environmental loads were calculated utilizing SimaPro, a specialized Life Cycle Assessment tool, and then incorporated into a linear programming model, solved by LINGO optimization software. Environmental criteria were used to obtain the optimal configuration and operation of the system simultaneously.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rajendraprasad A. Pagare ◽  
Santosh Kumar ◽  
Abhilasha Mishra

Abstract We presented a concept of converged coexistence (CC) access network and generate, and test model is demonstrated for optimization of channel launch power PTODN in the distribution network which subsequently confirm power budget class of NG-PON2 in this paper. Multiplexing of wavelength and time (TWDM) technology is incorporated for multichannel NG-PON2 configurations for 5G, internet-of-things (IoT) applications, and fiber-to-the-x (FTTX) services. CC NG-PON2 symmetric configuration supporting 2.5 and 10 Gbps channels are analyzed and compared in the sight of channel nonlinear impairments includes Kerr-effect (γ) spanning from self phase modulation (SPM) and cross-phase modulation (CPM), chromatic dispersion (CD), and four wave mixing (FWM) in worst-case scenario. Intensity modulation (IM) technique incorporated before multiplexing the D/S channels by coexisting element (CEx) and coupled to wavelength routed (WR) optical distribution network (ODN). U/S channels are routed using wavelength select (WS) ODN. ODN is implemented using G.652 non zero dispersion shift (NZ-DSF) single-mode (SM) fiber. Multi-channel spectrum envelope propagating in either direction is optimized to PTODN = 3/5/7/9 dBm and 4 dBm, respectively. The theoretical modeling and simulative results confirms the proposed network configuration supports incremental receiver sensitivity (Rxs) as −42.19/−42/−39.75/−37.97 dBm and −35.45/−35.38/−33.45/0.38/−42 dBm for λ1 2.5 Gbps and λ8 10 Gbps TWDM and PtP WDM channels, respectively, for all-class networks supporting splitter configuration ratio of 640 at 50 km mitigating effect of channel nonlinearities like CD, SPM, cross-phase modulation (XPM), and FWM for λ8 10 Gbps channel.


2008 ◽  
Author(s):  
Sonia Savelli ◽  
Susan Joslyn ◽  
Limor Nadav-Greenberg ◽  
Queena Chen

Author(s):  
D. V. Vaniukova ◽  
◽  
P. A. Kutsenkov ◽  

The research expedition of the Institute of Oriental studies of the Russian Academy of Sciences has been working in Mali since 2015. Since 2017, it has been attended by employees of the State Museum of the East. The task of the expedition is to study the transformation of traditional Dogon culture in the context of globalization, as well as to collect ethnographic information (life, customs, features of the traditional social and political structure); to collect oral historical legends; to study the history, existence, and transformation of artistic tradition in the villages of the Dogon Country in modern conditions; collecting items of Ethnography and art to add to the collection of the African collection of the. Peter the Great Museum (Kunstkamera, Saint Petersburg) and the State Museum of Oriental Arts (Moscow). The plan of the expedition in January 2020 included additional items, namely, the study of the functioning of the antique market in Mali (the “path” of things from villages to cities, which is important for attributing works of traditional art). The geography of our research was significantly expanded to the regions of Sikasso and Koulikoro in Mali, as well as to the city of Bobo-Dioulasso and its surroundings in Burkina Faso, which is related to the study of migrations to the Bandiagara Highlands. In addition, the plan of the expedition included organization of a photo exhibition in the Museum of the village of Endé and some educational projects. Unfortunately, after the mass murder in March 2019 in the village of Ogossogou-Pel, where more than one hundred and seventy people were killed, events in the Dogon Country began to develop in the worst-case scenario: The incessant provocations after that revived the old feud between the Pel (Fulbe) pastoralists and the Dogon farmers. So far, this hostility and mutual distrust has not yet developed into a full-scale ethnic conflict, but, unfortunately, such a development now seems quite likely.


2020 ◽  
Author(s):  
Ahmed Abdelmoaty ◽  
Wessam Mesbah ◽  
Mohammad A. M. Abdel-Aal ◽  
Ali T. Alawami

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination between the wind-thermal generators and the EVs in a virtual<br>power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy<br>prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the e?effectiveness of the proposed model in terms of the VPPO's profit. A comparison between the proposed model and the scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the production and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from<br>the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life scenarios.<br>


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 491
Author(s):  
Alina E. Kozhukhova ◽  
Stephanus P. du Preez ◽  
Aleksander A. Malakhov ◽  
Dmitri G. Bessarabov

In this study, a Pt/anodized aluminum oxide (AAO) catalyst was prepared by the anodization of an Al alloy (Al6082, 97.5% Al), followed by the incorporation of Pt via an incipient wet impregnation method. Then, the Pt/AAO catalyst was evaluated for autocatalytic hydrogen recombination. The Pt/AAO catalyst’s morphological characteristics were determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average Pt particle size was determined to be 3.0 ± 0.6 nm. This Pt/AAO catalyst was tested for the combustion of lean hydrogen (0.5–4 vol% H2 in the air) in a recombiner section testing station. The thermal distribution throughout the catalytic surface was investigated at 3 vol% hydrogen (H2) using an infrared camera. The Al/AAO system had a high thermal conductivity, which prevents the formation of hotspots (areas where localized surface temperature is higher than an average temperature across the entire catalyst surface). In turn, the Pt stability was enhanced during catalytic hydrogen combustion (CHC). A temperature gradient over 70 mm of the Pt/AAO catalyst was 23 °C and 42 °C for catalysts with uniform and nonuniform (worst-case scenario) Pt distributions. The commercial computational fluid dynamics (CFD) code STAR-CCM+ was used to compare the experimentally observed and numerically simulated thermal distribution of the Pt/AAO catalyst. The effect of the initial H2 volume fraction on the combustion temperature and conversion of H2 was investigated. The activation energy for CHC on the Pt/AAO catalyst was 19.2 kJ/mol. Prolonged CHC was performed to assess the durability (reactive metal stability and catalytic activity) of the Pt/AAO catalyst. A stable combustion temperature of 162.8 ± 8.0 °C was maintained over 530 h of CHC. To confirm that Pt aggregation was avoided, the Pt particle size and distribution were determined by TEM before and after prolonged CHC.


Sports ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 76
Author(s):  
Dylan Mernagh ◽  
Anthony Weldon ◽  
Josh Wass ◽  
John Phillips ◽  
Nimai Parmar ◽  
...  

This is the first study to report the whole match, ball-in-play (BiP), ball-out-of-play (BoP), and Max BiP (worst case scenario phases of play) demands of professional soccer players competing in the English Championship. Effective playing time per soccer game is typically <60 min. When the ball is out of play, players spend time repositioning themselves, which is likely less physically demanding. Consequently, reporting whole match demands may under-report the physical requirements of soccer players. Twenty professional soccer players, categorized by position (defenders, midfielders, and forwards), participated in this study. A repeated measures design was used to collect Global Positioning System (GPS) data over eight professional soccer matches in the English Championship. Data were divided into whole match and BiP data, and BiP data were further sub-divided into different time points (30–60 s, 60–90 s, and >90 s), providing peak match demands. Whole match demands recorded were compared to BiP and Max BiP, with BiP data excluding all match stoppages, providing a more precise analysis of match demands. Whole match metrics were significantly lower than BiP metrics (p < 0.05), and Max BiP for 30–60 s was significantly higher than periods between 60–90 s and >90 s. No significant differences were found between positions. BiP analysis allows for a more accurate representation of the game and physical demands imposed on professional soccer players. Through having a clearer understanding of maximum game demands in professional soccer, practitioners can design more specific training methods to better prepare players for worst case scenario passages of play.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Joshua M Milnes ◽  
Elizabeth H Beers

Abstract Trissolcus japonicus (Ashmead), an Asian parasitoid of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), was first detected in North America in 2014. Although testing in quarantine facilities as a candidate for classical biological control is ongoing, adventive populations have appeared in multiple sites in the United States, Canada, and Europe. Extensive laboratory testing of T. japonicus against other North American pentatomids and H. halys has revealed a higher rate of parasitism of H. halys, but not complete host specificity. However, laboratory tests are necessarily artificial, in which many host finding and acceptance cues may be circumvented. We offered sentinel egg masses of three native pentatomid (Hemiptera: Pentatomidae) pest species (Chinavia hilaris (Say), Euschistus conspersus Uhler, and Chlorochroa ligata (Say)) in a field paired-host assay in an area with a well-established adventive population of T. japonicus near Vancouver, WA. Overall, 67% of the H. halys egg masses were parasitized by T. japonicus during the 2-yr study. Despite the ‘worst case’ scenario for a field test (close proximity of the paired egg masses), the rate of parasitism (% eggs producing adult wasps) on all three native species was significantly less (0.4–8%) than that on H. halys eggs (77%). The levels of successful parasitism of T. japonicus of the three species are C. hilaris > E. conspersus > C. ligata. The potential impact of T. japonicus on these pentatomids is probably minimal.


Sign in / Sign up

Export Citation Format

Share Document