scholarly journals Electronic Device and Data Processing Method for Soil Resistivity Analysis

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1281
Author(s):  
Leonardo Acho ◽  
Gisela Pujol-Vázquez ◽  
José Gibergans-Báguena

This paper presents a mathematical algorithm and an electronic device to study soil resistivity. The system was based on introducing a time-varying electrical signal into the soil by using two electrodes and then collecting the electrical response of the soil. Hence, the proposed electronic system relied on a single-phase DC-to-AC converter followed by a transformer for the soil-to-circuit coupling. By using the maximum likelihood statistical method, a mathematical algorithm was realized to discern soil resistivity. The novelty of the numerical approach consisted of modeling a set of random data from the voltmeters by using a parametric uniform probability distribution function, and then, a parametric estimation was carried out for dataset analysis. Furthermore, to validate our contribution, a two-electrode laboratory experiment with soil was also designed. Finally, and according to the experimental outcomes, our electronic circuit and mathematical data analysis approach were able to detect different soil resistivities.


2014 ◽  
Vol 50 (64) ◽  
pp. 8845-8848 ◽  
Author(s):  
Akshaya K. Palai ◽  
Jihee Lee ◽  
Tae Joo Shin ◽  
Amit Kumar ◽  
Seung-Un Park ◽  
...  

Preparation and structural analysis of highly ordered single crystalline wires of a diketopyrrolopyrrole (DPP) molecular semiconductor grown through a solution process are reported, and the static/dynamic electrical response of an organic electronic device using the DPP semiconductor has been analyzed.



2000 ◽  
Vol 123 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Randall K. Kirschman ◽  
Witold M. Sokolowski ◽  
Elizabeth A. Kolawa

Active thermal control for electronics on Mars rovers imposes a serious penalty in weight, volume, power consumption, and reliability. Thus, we propose that thermal control be eliminated for future rovers. From a functional standpoint there is no reason that the electronics could not operate over the entire temperature range of the Martian environment, which can vary from a low of ≈−90°C to a high of ≈+20°C during the Martian night and day. The upper end of this range is well within that for conventional electronics. Although the lower end is considerably below that for which conventional—even high-reliability—electronics is designed or tested, it is well established that electronic devices can operate to such low temperatures. The primary concern is reliability of the overall electronic system, especially in regard to the numerous daily temperature cycles that it would experience over the duration of a mission on Mars. Accordingly, key reliability issues have been identified for elimination of thermal control on future Mars rovers. One of these is attachment of semiconductor die onto substrates and into packages. Die attachment is critical since it forms a mechanical, thermal, and electrical interface between the electronic device and the substrate or package. This paper summarizes our initial investigation of existing information related to this issue, in order to form an opinion whether die attachment techniques exist, or could be developed with reasonable effort, to withstand the Mars thermal environment for a mission duration of approximately one earth year. Our conclusion, from a review of literature and personal contacts, is that die attachment can be made sufficiently reliable to satisfy the requirements of future Mars rovers. Moreover, it appears that there are several possible techniques from which to choose and that the requirements could be met by judicious selection from existing methods using hard solders, soft solders, or organic adhesives. Thus, die attachment does not appear to be a roadblock to eliminating thermal control for rover electronics. We recommend that this be further investigated and verified for the specific hardware and thermal conditions appropriate to Mars rovers.



Author(s):  
Erman Azwan Yahya ◽  
Ramani Kannan ◽  
Lini Lee

High-frequency semiconductor devices are key components for advanced power electronic system that require fast switching speed. Power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is the most famous electronic device that are used in much power electronic system. However, the application such as space borne, military and communication system needs Power MOSFET to withstand in radiation environments. This is very challenging for the engineer to develop a device that continuously operated without changing its electrical behavior due to radiation. Therefore, the main objective of this study is to investigate the Single Event Effect (SEE) sensitivity by using Heavy Ion Radiation on the commercial Power MOSFET. A simulation study using Sentaurus Synopsys TCAD software for process simulation and device simulation was done. The simulation results reveal that single heavy ion radiation has affected the device structure and fluctuate the I-V characteristic of commercial Power MOSFET.



1996 ◽  
Vol 118 (4) ◽  
pp. 250-257 ◽  
Author(s):  
O. J. Ilegbusi

The flow and heat transfer characteristics in a forced-air cooled electronic device are calculated with a two-fluid model of turbulence. The fluids are defined as turbulent and nonturbulent, and precludes the need for low-Reynolds number model in the near-wall regions. Transport equations are solved for the zone-averaged variables of each fluid. Empirical relations, established in prior work, are used to express interchange of mass, momentum, and energy at the interface. Gradient-diffusion flux is considered an intrafluid source of turbulence. Several cases are considered showing effects of Reynolds number and heat-dissipation density on the flow and thermal fields. A critical comparison is made between the results based on the application of this model and the conventional k-ε model. Such results include velocity vectors and temperature distribution. In addition, the two-fluid model predicts spatial distribution of the intermittency factor, which provides a measure of the extent of turbulence and mixing in the electronic system.



Author(s):  
Sumit Gupta ◽  
Kenneth J. Loh

The main objective of this work is to develop a non-contact, non-invasive, structural health monitoring technique for surface and sub-surface damage detection in structures such as composite helicopter rotor blades. In many cases, composite structures are prone to damage in the form of cracks, delamination, and manufacturing defects, which can propagate beneath structural surfaces and cause severe component or catastrophic structural failure. The damage detection technique in this study works on the principle of electrical capacitance tomography. Different patterns of electrical field are propagated in a pre-defined sensing area. Using measurements of electrical response along boundaries of the sensing area, the permittivity distribution within that space can be reconstructed. First, a series of numerical simulations was performed by altering the electrical permittivity at different locations to simulate damage. The shapes and locations of permittivity changes were captured by the proposed technique. Second, to demonstrate its validity, an experimental test setup was built with a set of boundary electrodes. The system was connected to a function generator that supplied an electrical signal and induced electrical fields between electrodes. Capacitance between pairs of electrodes were then measured, which were used as inputs for solving the inverse permittivity reconstruction problem. Various test cases with different objects placed in the sensing area were conducted for validating this technique. The preliminary results show that the system was able to reconstruct spatial permittivity distributions and detect the presence, shapes, and locations of objects, thereby suggesting potential for damage detection.



2013 ◽  
Vol 543 ◽  
pp. 192-195 ◽  
Author(s):  
Mohammad Arab Pour Yazdi ◽  
Jean Baptiste Sanchez ◽  
Eric Monsifrot ◽  
Pascal Briois ◽  
Franck Berger ◽  
...  

This paper reports results of dodecane-sensing studies with double-substituted LaCoO3perovskite oxide nanowires. La0.40Sr0.15Ag0.45CoO3-αnanowires were co-sputtered from metallic La, Sr, Ag and Co targets in the presence of a reactive argon-oxygen gas mixture. As deposited coatings are amorphous and crystallise in the perovskite structure after annealing at 873 K for 2 hours under air. Electrical response of the La0.40Sr0.15Ag0.45CoO3-αnanowires was measured at different temperature under air and under air containing 1 to 100 ppm (v) of dodecane vapour. The electrical signal of the nanowires was found to be high and it was possible to detect low concentrations of dodecane (under 5 ppm (v) ) at 573 K.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Moon-Hyun Cha ◽  
Jeongwoon Hwang

Abstract The effect of inhomogeneous quantum dot (QD) size distribution on the electronic transport of one-dimensional (1D) QD chains (QDCs) is theoretically investigated. The non-equilibrium Green function method is employed to compute the electron transmission probabilities of QDCs. The ensemble averaged transmission probability shows a close agreement with the conductivity equation predicted by Anderson et al. for a disordered electronic system. The fidelity of quantum transport is defined as the transmission performance of an ensemble of QDCs of length N (N-QDCs) to assess the robustness of QDCs as a practical electronic device. We found that the fidelity of inhomogeneous N-QDCs with the standard deviation of energy level distribution σε is a Lorentzian function of variable Nσε2. With these analytical expressions, we can predict the conductance and fidelity of any QDC characterized by (N, σε). Our results can provide a guideline for combining the chain length and QD size distributions for high-mobility electron transport in 1D QDCs.



Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1363 ◽  
Author(s):  
Valentina Paolucci ◽  
Seyed Mahmoud Emamjomeh ◽  
Michele Nardone ◽  
Luca Ottaviano ◽  
Carlo Cantalini

WS2 exfoliated by a combined ball milling and sonication technique to produce few-layer WS2 is characterized and assembled as chemo-resistive NO2, H2 and humidity sensors. Microstructural analyses reveal flakes with average dimensions of 110 nm, “aspect ratio” of lateral dimension to the thickness of 27. Due to spontaneous oxidation of exfoliated WS2 to amorphous WO3, films have been pre-annealed at 180 °C to stabilize WO3 content at ≈58%, as determined by X-ray Photoelectron Spectroscopy (XPS), Raman and grazing incidence X-ray Diffraction (XRD) techniques. Microstructural analysis repeated after one-year conditioning highlighted that amorphous WO3 concentration is stable, attesting the validity of the pre-annealing procedure. WS2 films were NO2, H2 and humidity tested at 150 °C operating Temperature (OT), exhibiting experimental detection limits of 200 ppb and 5 ppm to NO2 and H2 in dry air, respectively. Long-term stability of the electrical response recorded over one year of sustained conditions at 150 °C OT and different gases demonstrated good reproducibility of the electrical signal. The role played by WO3 and WS2 upon gas response has been addressed and a likely reaction gas-mechanism presented. Controlling the microstructure and surface oxidation of exfoliated Transition Metal Dichalcogenides (TMDs) represents a stepping-stone to assess the reproducibility and long-term response of TMDs monolayers in gas sensing applications.



2005 ◽  
Vol 04 (05n06) ◽  
pp. 839-848 ◽  
Author(s):  
A. K. SOOD ◽  
SHANKAR GHOSH ◽  
N. KUMAR

The flow of a liquid on single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response is found to be logarithmic in the flow speed over a wide range. The magnitude of the flow induced electrical signal generated depends sensitively on the ionic conductivity and the polar nature of the liquid, and electrical biasing of the nanotubes can control its direction. Our measurements suggest that the dominant mechanism responsible for this highly sub-linear response should involve a direct forcing of the free charge carriers in the nanotubes by the fluctuating Coulombic field of the liquid flowing past it.



Sign in / Sign up

Export Citation Format

Share Document