Die Attachment for −120°C to +20°C Thermal Cycling of Microelectronics for Future Mars Rovers—An Overview1

2000 ◽  
Vol 123 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Randall K. Kirschman ◽  
Witold M. Sokolowski ◽  
Elizabeth A. Kolawa

Active thermal control for electronics on Mars rovers imposes a serious penalty in weight, volume, power consumption, and reliability. Thus, we propose that thermal control be eliminated for future rovers. From a functional standpoint there is no reason that the electronics could not operate over the entire temperature range of the Martian environment, which can vary from a low of ≈−90°C to a high of ≈+20°C during the Martian night and day. The upper end of this range is well within that for conventional electronics. Although the lower end is considerably below that for which conventional—even high-reliability—electronics is designed or tested, it is well established that electronic devices can operate to such low temperatures. The primary concern is reliability of the overall electronic system, especially in regard to the numerous daily temperature cycles that it would experience over the duration of a mission on Mars. Accordingly, key reliability issues have been identified for elimination of thermal control on future Mars rovers. One of these is attachment of semiconductor die onto substrates and into packages. Die attachment is critical since it forms a mechanical, thermal, and electrical interface between the electronic device and the substrate or package. This paper summarizes our initial investigation of existing information related to this issue, in order to form an opinion whether die attachment techniques exist, or could be developed with reasonable effort, to withstand the Mars thermal environment for a mission duration of approximately one earth year. Our conclusion, from a review of literature and personal contacts, is that die attachment can be made sufficiently reliable to satisfy the requirements of future Mars rovers. Moreover, it appears that there are several possible techniques from which to choose and that the requirements could be met by judicious selection from existing methods using hard solders, soft solders, or organic adhesives. Thus, die attachment does not appear to be a roadblock to eliminating thermal control for rover electronics. We recommend that this be further investigated and verified for the specific hardware and thermal conditions appropriate to Mars rovers.

2021 ◽  
Vol 13 (13) ◽  
pp. 7047
Author(s):  
Nu Yu ◽  
Yao Zhang ◽  
Mengya Zhang ◽  
Haifeng Li

Cabin air quality and thermal conditions have a direct impact on passenger and flight crew’s health and comfort. In this study, in-cabin thermal environment and particulate matter (PM) exposures were investigated in four China domestic flights. The mean and standard deviation of the in-cabin carbon dioxide (CO2) concentrations in two tested flights are 1440 ± 111 ppm. The measured maximum in-cabin carbon monoxide (CO) concentration is 1.2 ppm, which is under the US Occupational Safety and Health Administration (OSHA) permissible exposure limit of 10 ppm. The tested relative humidity ranges from 13.8% to 67.0% with an average of 31.7%. The cabin pressure change rates at the end of the climbing stages and the beginning of the descending stages are close to 10 hPa·min−1, which might induce the uncomfortable feeling of passengers and crew members. PM mass concentrations were measured on four flights. The results show that PM concentrations decreased after the aircraft cabin door closed and were affected by severe turbulences. The highest in-cabin PM concentrations were observed in the oldest aircraft with an age of 13.2 years, and the waiting phase in this aircraft generated the highest exposures.


2021 ◽  
Vol 79 (6) ◽  
pp. 631-640
Author(s):  
Takaaki Tsunoda ◽  
Takeo Tsukamoto ◽  
Yoichi Ando ◽  
Yasuhiro Hamamoto ◽  
Yoichi Ikarashi ◽  
...  

Electronic devices such as medical instruments implanted in the human body and electronic control units installed in automobiles have a large impact on human life. The electronic circuits in these devices require highly reliable operation. Radiographic testing has recently been in strong demand as a nondestructive way to help ensure high reliability. Companies that use high-density micrometer-scale circuits or lithium-ion batteries require high speed and high magnification inspection of all parts. The authors have developed a new X-ray source supporting these requirements. The X-ray source has a sealed tube with a transmissive target on a diamond window that offers advantages over X-ray sources having a sealed tube with a reflective target. The X-ray source provides high-power-density X-ray with no anode degradation and a longer shelf life. In this paper, the authors will summarize X-ray source classification relevant to electronic device inspection and will detail X-ray source performance requirements and challenges. The paper will also elaborate on technologies employed in the X-ray source including tube design implementations for high-power-density X-ray, high resolution, and high magnification simultaneously; reduced system downtime for automated X-ray inspection; and reduced dosages utilizing quick X-ray on-and-off emission control for protection of sensitive electronic devices.


Author(s):  
Patrick W. Wilkerson ◽  
Andrzej J. Przekwas ◽  
Chung-Lung Chen

Multiscale multiphysics simulations were performed to analyze wirebonds for power electronic devices. Modern power-electronic devices can be subjected to extreme electrical and thermal conditions. Fully coupled electro-thermo-mechanical simulations were performed utilizing CFDRC’s CFD-ACE+ multiphysics simulation software and scripting capabilities. Use of such integrated multiscale multiphysics simulation and design tools in the design process can cut cost, shorten product development cycle time, and result in optimal designs. The parametrically designed multiscale multiphysics simulations performed allowed for a streamlined parametric analysis of the electrical, thermal, and mechanical effects on the wirebond geometry, bonding sites and power electronic device geometry. Multiscale analysis allowed for full device thermo-mechanical analysis as well as detailed analysis of wirebond structures. The multiscale simulations were parametrically scripted allowing for parametric simulations of the device and wirebond geometry as well as all other simulation variables. Analysis of heat dissipation from heat generated in the power-electronic device and through Joule heating were analyzed. The multiphysics analysis allowed for investigation of the location and magnitude of stress concentrations in the wirebond and device. These stress concentrations are not only investigated for the deformed wirebond itself, but additionally at the wirebond bonding sites and contacts. Changes in the wirebond geometry and bonding geometry, easily changed through the parametrically designed simulation scripts, allows for investigation of various wirebond geometries and operating conditions.


2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


2021 ◽  
pp. 1420326X2110345
Author(s):  
Marika Vellei ◽  
William O’Brien ◽  
Simon Martinez ◽  
Jérôme Le Dréau

Recent research suggests that a time-varying indoor thermal environment can lead to energy savings and contribute to boost buildings' energy flexibility. However, thermal comfort standardization has so far considered thermal comfort criteria as constant throughout the day. In general, very little attention has been given to the ‘ time of day' variable in the context of thermal comfort research. In this paper, we show some evidence of a time-varying thermal perception by using: (1) data from about 10,000 connected Canadian thermostats made available as part of the ‘ Donate Your Data' dataset and (2) about 22,000 samples of complete (objective + ‘ right-here-right-now' subjective) thermal comfort field data from the ASHRAE I and SCATs datasets. We observe that occupants prefer colder thermal conditions at 14:00 and progressively warmer ones in the rest of the day, indistinctively in the morning and evening. Neutral temperature differences between 08:00 and 14:00 and 14:00 and 20:00 are estimated to be of the order of 2°C. We hypothesize that the human circadian rhythm is the cause of this difference. Nevertheless, the results of this study are only based on observational data. Thermal comfort experiments in controlled environmental chambers are required to confirm these findings and to better elucidate the effects of light and circadian timing and their interaction on thermal perception.


2019 ◽  
Vol 41 (5) ◽  
pp. 561-585 ◽  
Author(s):  
Fangliang Zhong ◽  
John K Calautit ◽  
Ben R Hughes

After winning the bid of the FIFA’s World Cup 2022, Qatar is facing the greatest challenges in terms of minimizing substantial energy consumptions for air-conditioning of stadiums and maintaining aero-thermal comfort for both players and spectators inside stadiums. This paper presents the results of temperature distributions and wind environment of the original stadium under the hot-humid climate and improvements on them for optimized scenarios of cooling jets. A combined computational fluid dynamics and building energy simulation approach was used to analyse the cooling performance and energy consumption per match of cooling air jets for 10 scenarios with different supply velocities, supply temperatures and locations of jets. The optimal scenario is to employ vertical jets above the upper tiers at supply temperature of 20°C and velocities of 2–12 m/s, integrated with horizontal jets of the same temperature at the lower tiers with 4 m/s and around the pitch with 7 m/s. This scenario can maintain the spectator tiers at an average temperature of 22°C and reduce the maximum predicted percentage of dissatisfied of thermal comfort from the original 100% to 63% for the pitch and 19% for the tiers, respectively. In terms of the energy consumption for the air-conditioning system per match, compared with one of the 2010 South Africa World Cup stadiums Royal Bafokeng stadium which consumed approximately 22.8 MWh energy for air-conditioning in winter (highest outdoor temperature 24.4°C), the maximum energy consumption of the optimal scenario in November (highest outdoor temperature 34.2°C) can reach 108 MWh. In addition, the spectator zones with scenario 8 have the potential to be resilient to the seasonal change of outdoor temperature if slight modifications of the supply velocities and precise temperature control on the spectator zones are applied. Moreover, the configurations presented in this paper can be used as a foundation of jets arrangement for future stadium retrofits in the hot climates. Practical application: This study assesses the aero-thermal conditions of a case study stadium under the hot climate of Qatar and explores the potential of applying cooling jets with different supply velocities, supply temperatures and their locations on the enhancement of both thermal and wind environment of spectator tiers and pitch. The assessment of the original stadium indicates that the ascending curved roof structure impedes the fresh air entering into the stadium and results in an asymmetric temperature distribution on the spectator tiers. The optimized design suggests a combination of vertical jets under the roof and both three arrays of horizontal jets at lower tiers and around pitch for future stadium optimizations in hot climates. It also recommends enhancing the thermal conditions on the pitch by optimizing the velocity of horizontal jets around the pitch. Moreover, the future design of the exact stadiums to be resilient to the seasonal changing outdoor temperature can be implemented based on scenario 8.


Author(s):  
Pradeep Lall ◽  
Rahul Vaidya ◽  
Vikrant More ◽  
Jeff Suhling ◽  
Kai Goebel

Electronic assemblies deployed in harsh environments may be subjected to multiple thermal environments during the use-life of the equipment. Often the equipment may not have any macro-indicators of damage such as cracks or delamination. Quantification of thermal environments during use-life is often not feasible because of the data-capture and storage requirements, and the overhead on core-system functionality. There is need for tools and techniques to quantify damage in deployed systems in absence of macro-indicators of damage without knowledge of prior stress history. The presented PHM framework is targeted towards high reliability applications such as avionic and space systems. In this paper, Sn3.0Ag0.5Cu alloy packages have been subjected to multiple thermal cycling environments including −55 to 125C and 0 to 100C. Assemblies investigated include area-array packages soldered on FR4 printed circuit cards. The methodology involves the use of condition monitoring devices, for gathering data on damage pre-cursors at periodic intervals. Damage-state interrogation technique has been developed based on the Levenberg-Marquardt Algorithm in conjunction with the microstructural damage evolution proxies. The presented technique is applicable to electronic assemblies which have been deployed on one thermal environment, then withdrawn from service and targeted for redeployment in a different thermal environment. Test cases have been presented to demonstrate the viability of the technique for assessment of prior damage, operational readiness and residual life for assemblies exposed to multiple thermo-mechanical environments. Prognosticated prior damage and the residual life show good correlation with experimental data, demonstrating the validity of the presented technique for multiple thermo-mechanical environments.


Author(s):  
Pradeep Lall ◽  
Rahul Vaidya ◽  
Vikrant More ◽  
Jeff Suhling ◽  
Kai Goebel

Electronic assemblies deployed in harsh environments may be subjected to multiple thermal environments during the use-life of the equipment. Often the equipment may not have any macro-indicators of damage such as cracks or delamination. Quantification of thermal environments during use-life is often not feasible because of the data-capture and storage requirements, and the overhead on core-system functionality. There is need for tools and techniques to quantify damage in deployed systems in absence of macro-indicators of damage without knowledge of prior stress history. The presented PHM framework is targeted towards high reliability applications such as avionic and space systems. In this paper, Sn3.0Ag0.5Cu alloy packages have been subjected to multiple thermal cycling environments including −55 to 125C and 0 to 100C. Assemblies investigated include area-array packages soldered on FR4 printed circuit cards. The methodology involves the use of condition monitoring devices, for gathering data on damage pre-cursors at periodic intervals. Damage-state interrogation technique has been developed based on the Levenberg-Marquardt Algorithm in conjunction with the microstructural damage evolution proxies. The presented technique is applicable to electronic assemblies which have been deployed on one thermal environment, then withdrawn from service and targeted for redeployment in a different thermal environment. Test cases have been presented to demonstrate the viability of the technique for assessment of prior damage, operational readiness and residual life for assemblies exposed to multiple thermo-mechanical environments. Prognosticated prior damage and the residual life show good correlation with experimental data, demonstrating the validity of the presented technique for multiple thermo-mechanical environments.


2019 ◽  
Vol 887 ◽  
pp. 428-434
Author(s):  
Dorcas A. Ayeni ◽  
Olaniyi O. Aluko ◽  
Morisade O. Adegbie

Man requires a thermal environment that is within the range of his adaptive capacity and if this fluctuates outside the normal, a reaction is required beyond its adaptive capacity which results to health challenges. Therefore, the aim of building design in the tropical region is to minimize the heat gain indoors and enhance evaporative cooling of the occupants of the space so as to achieve thermal comfort. In most cases, the passive technologies are not adequate in moderating indoor climate for human comfort thereby relying on active energy technique to provide the needed comfort for the building users. The need for the use of vegetation as a panacea for achieving comfortable indoor thermal conditions in housing is recognised by architects globally. However, the practice by architects in Nigeria is still at the lower ebb. The thrust of this paper therefore is to examine the impact of vegetation in solar control reducing thermal discomfort in housing thereby enhancing the energy performance of the buildings. Using secondary data, the paper identifies the benefits of vegetation in and around buildings to include improvement of indoor air quality through the aesthetics quality of the environment and concludes that vegetation in and around building will in no small measure contributes to saving energy consumption.


Sign in / Sign up

Export Citation Format

Share Document