scholarly journals Congestion Prediction in FPGA Using Regression Based Learning Methods

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1995
Author(s):  
Pingakshya Goswami ◽  
Dinesh Bhatia

Design closure in general VLSI physical design flows and FPGA physical design flows is an important and time-consuming problem. Routing itself can consume as much as 70% of the total design time. Accurate congestion estimation during the early stages of the design flow can help alleviate last-minute routing-related surprises. This paper has described a methodology for a post-placement, machine learning-based routing congestion prediction model for FPGAs. Routing congestion is modeled as a regression problem. We have described the methods for generating training data, feature extractions, training, regression models, validation, and deployment approaches. We have tested our prediction model by using ISPD 2016 FPGA benchmarks. Our prediction method reports a very accurate localized congestion value in each channel around a configurable logic block (CLB). The localized congestion is predicted in both vertical and horizontal directions. We demonstrate the effectiveness of our model on completely unseen designs that are not initially part of the training data set. The generated results show significant improvement in terms of accuracy measured as mean absolute error and prediction time when compared against the latest state-of-the-art works.


Genetics ◽  
2021 ◽  
Author(s):  
Marco Lopez-Cruz ◽  
Gustavo de los Campos

Abstract Genomic prediction uses DNA sequences and phenotypes to predict genetic values. In homogeneous populations, theory indicates that the accuracy of genomic prediction increases with sample size. However, differences in allele frequencies and in linkage disequilibrium patterns can lead to heterogeneity in SNP effects. In this context, calibrating genomic predictions using a large, potentially heterogeneous, training data set may not lead to optimal prediction accuracy. Some studies tried to address this sample size/homogeneity trade-off using training set optimization algorithms; however, this approach assumes that a single training data set is optimum for all individuals in the prediction set. Here, we propose an approach that identifies, for each individual in the prediction set, a subset from the training data (i.e., a set of support points) from which predictions are derived. The methodology that we propose is a Sparse Selection Index (SSI) that integrates Selection Index methodology with sparsity-inducing techniques commonly used for high-dimensional regression. The sparsity of the resulting index is controlled by a regularization parameter (λ); the G-BLUP (the prediction method most commonly used in plant and animal breeding) appears as a special case which happens when λ = 0. In this study, we present the methodology and demonstrate (using two wheat data sets with phenotypes collected in ten different environments) that the SSI can achieve significant (anywhere between 5-10%) gains in prediction accuracy relative to the G-BLUP.



2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Ali M. Al-Salihi ◽  
Zahraa A. AL-Ramahy

Soil temperature is an important meteorological variable which plays a significant role in hydrological cycle. In present study, artificial intelligence technique employed for estimating for 3 daysa head soil temperature estimation at 10 and 20 cm depth. Soil temperature daily data for the period 1 January 2012 to 31 December 2013 measured in three stations namely (Mosul, Baghdad and Muthanna) in Iraq. The training data set includes 616 days and the testing data includes 109 days. The Levenberg-Marquardt, Scaled Conjugate Gradient and Bayesian regularization algorithms. To evaluate the ANN models, Root mean square error (RMSE), Mean absolute error (MAE), Mean absolute percentage error (MAPE) and Correlation Coefficient (r) were determined. According to the four statistical indices were calculated of the optimum ANN model, it was ANN model (3) in Muthanaa station for the depth 10 cm and ANN model (3) in Baghdad station for the depth 20 were (RMSE=0.959oC, MAE=0.725, MAPE=4.293, R=0.988) and (RMSE=0.887OC, MAE=0.704, MAPE=4.239, R=0.993) respectively, theses statistical criteria shown the efficiency of artificial neural network for soil temperature estimation.



2014 ◽  
Vol 7 (4) ◽  
pp. 132-143
Author(s):  
ABBAS M. ABD ◽  
SAAD SH. SAMMEN

The prediction of different hydrological phenomenon (or system) plays an increasing role in the management of water resources. As engineers; it is required to predict the component of natural reservoirs’ inflow for numerous purposes. Resulting prediction techniques vary with the potential purpose, characteristics, and documented data. The best prediction method is of interest of experts to overcome the uncertainty, because the most hydrological parameters are subjected to the uncertainty. Artificial Neural Network (ANN) approach has adopted in this paper to predict Hemren reservoir inflow. Available data including monthly discharge supplied from DerbendiKhan reservoir and rain fall intensity falling on the intermediate catchment area between Hemren-DerbendiKhan dams were used.A Back Propagation (LMBP) algorithm (Levenberg-Marquardt) has been utilized to construct the ANN models. For the developed ANN model, different networks with different numbers of neurons and layers were evaluated. A total of 24 years of historical data for interval from 1980 to 2004 were used to train and test the networks. The optimum ANN network with 3 inputs, 40 neurons in both two hidden layers and one output was selected. Mean Squared Error (MSE) and the Correlation Coefficient (CC) were employed to evaluate the accuracy of the proposed model. The network was trained and converged at MSE = 0.027 by using training data subjected to early stopping approach. The network could forecast the testing data set with the accuracy of MSE = 0.031. Training and testing process showed the correlation coefficient of 0.97 and 0.77 respectively and this is refer to a high precision of that prediction technique.



Thorax ◽  
2019 ◽  
Vol 74 (12) ◽  
pp. 1161-1167 ◽  
Author(s):  
Youchao Dai ◽  
Wanshui Shan ◽  
Qianting Yang ◽  
Jiubiao Guo ◽  
Rihong Zhai ◽  
...  

BackgroundPerturbed iron homeostasis is a risk factor for tuberculosis (TB) progression and an indicator of TB treatment failure and mortality. Few studies have evaluated iron homeostasis as a TB diagnostic biomarker.MethodsWe recruited participants with TB, latent TB infection (LTBI), cured TB (RxTB), pneumonia (PN) and healthy controls (HCs). We measured serum levels of three iron biomarkers including serum iron, ferritin and transferrin, then established and validated our prediction model.ResultsWe observed and verified that the three iron biomarker levels correlated with patient status (TB, HC, LTBI, RxTB or PN) and with the degree of lung damage and bacillary load in patients with TB. We then built a TB prediction model, neural network (NNET), incorporating the data of the three iron biomarkers. The model showed good performance for diagnosis of TB, with 83% (95% CI 77 to 87) sensitivity and 86% (95% CI 83 to 89) specificity in the training data set (n=663) and 70% (95% CI 58 to 79) sensitivity and 92% (95% CI 86 to 96) specificity in the test data set (n=220). The area under the curves (AUCs) of the NNET model to discriminate TB from HC, LTBI, RxTB and PN were all >0.83. Independent validation of the NNET model in a separate cohort (n=967) produced an AUC of 0.88 (95% CI 0.85 to 0.91) with 74% (95% CI 71 to 77) sensitivity and 92% (95% CI 87 to 96) specificity.ConclusionsThe established NNET TB prediction model discriminated TB from HC, LTBI, RxTB and PN in a large cohort of patients. This diagnostic assay may augment current TB diagnostics.



2021 ◽  
Vol 21 (5) ◽  
pp. 221-228
Author(s):  
Byungsik Lee

Neural network models based on deep learning algorithms are increasingly used for estimating pile load capacities as supplements of bearing capacity equations and field load tests. A series of hyperparameter tuning is required to improve the performance and reliability of developing a neural network model. In this study, the number of hidden layers and neurons, the activation functions, the optimizing algorithms of the gradient descent method, and the learning rates were tuned. The grid search method was applied for the tuning, which is a hyperpameter optimizer supplied by the developing platform. The cross-validation method was applied to enhance reliability for model validation. An appropriate number of epochs was determined using the early stopping method to prevent the overfitting of the model to the training data. The performance of the tuned optimum model evaluated for the test data set revealed that the model could estimate pile load capacities approximately with an average absolute error of 3,000 kN and a coefficient of determinant of 0.5.



Author(s):  
Dhanalakshmi Kasiraja ◽  
Anna Saro Vijendran

<p>The main objective of this research is to improve the predictive accuracy of classification in ordinal multiclass imbalanced scenario. The methodology attempts to uplift the classifier performance through synthesizing sophisticated objects of immature classes.  A novel Adaptive Data Structure based oversampling algorithm is proposed to create synthetic objects and Extreme Learning Machine for Ordinal Regression (ELMOP) classifier is adopted to validate our work.   The proposed method generating new objects by analyzing the characteristics and intricacy of immature class objects. On the whole, the data set is divided into training and test data. Training data set is updated with new synthetic objects.  The experimental analysis is performed on testing data set to check the efficiency of the proposed methodology by comparing it with the existing work.    The performance evaluation is conducted in terms of the parameters called Mean Absolute Error, Maximum Mean Absolute Error, Geometric Mean, Kappa and Average Accuracy.  The measures prove that the proposed methodology can produce authentic synthetic objects than the existing techniques.  The Proposed technique can synthesize the new effective objects through evaluating the structure of immature class.  It boosts the global precision and class wise precision especially preserves rank order of the classes.</p>



2021 ◽  
Vol 17 (2) ◽  
pp. 1-18
Author(s):  
Xiangmao Chang ◽  
Gangkai Li ◽  
Guoliang Xing ◽  
Kun Zhu ◽  
Linlin Tu

Heart rate (HR) estimation based on photoplethysmography (PPG) signals has been widely adopted in wrist-worn devices. However, the motion artifacts caused by the user’s physical activities make it difficult to get the accurate HR estimation from contaminated PPG signals. Although many signal processing methods have been proposed to address this challenge, they are often highly optimized for specific scenarios, making them impractical in real-world settings where a user may perform a wide range of physical activities. In this article, we propose DeepHeart, a new HR estimation approach that features deep-learning-based denoising and spectrum-analysis-based calibration. DeepHeart generates clean PPG signals from electrocardiogram signals based on a training data set. Then a set of denoising convolutional neural networks (DCNNs) are trained with the contaminated PPG signals and their corresponding clean PPG signals. Contaminated PPG signals are then denoised by an ensemble of DCNNs and a spectrum-analysis-based calibration is performed to estimate the final HR. We evaluate DeepHeart on the IEEE Signal Processing Cup training data set with 12 records collected during various physical activities. DeepHeart achieves an average absolute error of 1.61 beats per minute (bpm), outperforming a state-of-the-art deep learning approach (4 bpm) and a classical signal processing approach (2.34 bpm).



1994 ◽  
Vol 24 (7) ◽  
pp. 1295-1301 ◽  
Author(s):  
Shongming Huang ◽  
Stephen J. Titus

This study presents an individual tree height prediction model for white spruce (Piceaglauca (Moench) Voss) and trembling aspen (Populustremuloides Michx.) grown in boreal mixed-species stands in Alberta. The model is based on a three-parameter Chapman–Richards function fitted to data from 164 permanent sample plots using the parameter prediction method. It is age independent and expresses tree height as a function of tree diameter, tree basal area, stand density, species composition, site productivity, and stand average diameter. This height-prediction model was fitted by weighted nonlinear regression for spruce and unweighted nonlinear regression for aspen. Almost all estimates of parameters were significant at α = 0.05 and model R2-values were high (0.9192 for white spruce and 0.9087 for aspen). No consistent underestimate or overestimate of tree heights was evident in plots of studentized residuals against predicted heights. The model was also tested on an independent data set representing the population on which the model was to be used. Results showed that the average prediction biases were not significant at α = 0.05 for either species, indicating that the model appropriately described the data and performed well when predictions were made.



2021 ◽  
Author(s):  
Dong Wang ◽  
JinBo Li ◽  
Yali Sun ◽  
Xianfei Ding ◽  
Xiaojuan Zhang ◽  
...  

Abstract Background: Although numerous studies are conducted every year on how to reduce the fatality rate associated with sepsis, it is still a major challenge faced by patients, clinicians, and medical systems worldwide. Early identification and prediction of patients at risk of sepsis and adverse outcomes associated with sepsis are critical. We aimed to develop an artificial intelligence algorithm that can predict sepsis early.Methods: This was a secondary analysis of an observational cohort study from the Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University. A total of 4449 infected patients were randomly assigned to the development and validation data set at a ratio of 4:1. After extracting electronic medical record data, a set of 55 features (variables) was calculated and passed to the random forest algorithm to predict the onset of sepsis.Results: The pre-procedure clinical variables were used to build a prediction model from the training data set using the random forest machine learning method; a 5-fold cross-validation was used to evaluate the prediction accuracy of the model. Finally, we tested the model using the validation data set. The area obtained by the model under the receiver operating characteristic (ROC) curve (AUC) was 0.91, the sensitivity was 87%, and the specificity was 89%.Conclusions: The newly established model can accurately predict the onset of sepsis in ICU patients in clinical settings as early as possible. Prospective studies are necessary to determine the clinical utility of the proposed sepsis prediction model.



Sign in / Sign up

Export Citation Format

Share Document