scholarly journals Washable, Low-Temperature Cured Joints for Textile-Based Electronics

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2749
Author(s):  
Jerzy Szalapak ◽  
Vitalij Scenev ◽  
Daniel Janczak ◽  
Lukas Werft ◽  
Sigrid Rotzler ◽  
...  

Low-temperature die-attaching pastes for wearable electronics are the key components to realize any type of device where components are additively manufactured by pick and place techniques. In this paper, the authors describe a simple method to realize stretchable, bendable, die-attaching pastes based on silver flakes to directly mount resistors and LEDs onto textiles. This paste can be directly applied onto contact pads placed on textiles by means of screen and stencil printing and post-processed at low temperatures to achieve the desired electrical and mechanical properties below 60 °C without sintering. Low curing temperatures lead to lower power consumption, which makes this paste ecological friendly.

2012 ◽  
Vol 443-444 ◽  
pp. 583-586
Author(s):  
Ya Juan Sun ◽  
Ri Ga Wu ◽  
Hong Jing Wang

The mechanical properties of a new Zr-based bulk metallic glass at low temperatures were investigated. The results indicate that the fracture strength increases significantly (4.9%) and the global plasticity increases somewhat when testing temperature is lowered to 123K. The stress-strain curve of the sample deformed exhibits more serrations and smaller stress drop due to formation of more shear bands at low temperature than at room temperature.


1989 ◽  
Vol 179 ◽  
Author(s):  
M. R. Silsbee ◽  
R. A. Steinke ◽  
D. M. Roy ◽  
D. K. Agrawal ◽  
R. Roy

AbstractReactive aluminas, including rapidly calcined gibbsites, offer exciting potential for forming ceramic materials at low temperatures. New x-ray amorphous aluminas will react with water at room temperatures to form compacts with 10–50 MPa tensile strengths, via viscous slurries. The cementious behavior of these materials has been examined. The results of TGA, x-ray diffraction, SEM, mechanical properties, and other characterization techniques, as applied to these systems, will be discussed.


2021 ◽  
Author(s):  
Sara Ghaderahmadi ◽  
Milad Kamkar ◽  
Nishat Tasnim ◽  
Mohammad Arjmand ◽  
Mina Hoorfar

Reduced detection temperature of hazardous gases such as H2S can lower power consumption and increase the long-term stability. The decreased operating temperature can be achieved via physical and chemical modification of the sensing layer.


Author(s):  
Paul Michael ◽  
Cecilia Dai ◽  
Kimberly Rodriguez

Abstract Hydraulic systems that are operated outdoors during winter can be exposed to extreme low temperatures. Low temperature thickening of the hydraulic fluid can increase power consumption, cause pump cavitation, and stall system actuation. In this study, the response time and power consumption of a hydraulic vehicle restraint system that is used outdoors year-round was evaluated at low temperatures. This safety device incorporated proximity switches that triggered a machine “fault” when the time delay between the locked and unlocked positions exceeded 8 seconds. Straight- and multi-grade ISO VG 32 and 46 fluids were compared in the device. The multi-grade oils were able to function at a lower temperature without faulting. The effect of system operating conditions and fluid properties on pump input power was evaluated. The input power was determined from measurements of pump rotational frequency and torque. Pump torque increased as the oil temperature decreased. As a result, low-temperature operating conditions resulted in a higher system power requirements. An empirical model was developed to investigate the effects of turbulent and laminar flow conditions on the hydraulic system power requirements. A comparison of model standard errors revealed that viscosity-dependent laminar losses had a greater impact on system performance than density-dependent turbulent losses. Since the viscosity coefficients of the fluids were very high at the test temperature, it was theorized that pressure drop in the hydraulic lines was affecting system response. Hydraulic system simulations were conducted via Automation Studio. Cylinder retraction velocities were evaluated with larger ID cap- and rod-side hoses. Increasing the cap-side hose diameter enhanced the low temperature performance of the system. Changes to the rod-side hose had minimal effect. These results provide new insights for system design and the formulation of hydraulic fluids used in extreme low temperature operations.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 785
Author(s):  
Cui ◽  
Jiang ◽  
Zhang ◽  
Liu

The metastable Fe-Ni-P alloy with phosphorus (P) solid-solution structure has been fabricated by spark plasma sintering. Its face-centered cubic (FCC) matrix without the precipitation of phosphide attains a high plasticity and an excellent strain hardening ability at room temperature. This Fe-Ni-P alloy is subjected to cryogenic treatment at various temperatures (−20 °C and −50 °C), to investigate the role of phosphorus on the microstructural evolution and mechanical properties of γ-(Fe-Ni) alloy at low temperatures. The results indicate that the addition of phosphorus can destabilize the Fe-Ni-P alloy and facilitate its martensitic transformation during cryogenic treatment. P-doping does not lead to obvious embrittlement of Fe-Ni-P alloy at low temperatures, but strengthens the alloy by promoting microstructure evolution. The Fe-Ni-P alloy has high plasticity and good strain hardening ability after treated at −20 °C, and is converted to acicular martensite structure after being treated at −50 °C, resulting in a significant increase in its hardness (433 HV) and compressive yield strength (1271 MPa). Developing this Fe-Ni-P alloy as a load-bearing component for low-temperature conditions shows great promise.


2016 ◽  
Vol 682 ◽  
pp. 380-386
Author(s):  
Piotr Osuch ◽  
Monika Walkowicz ◽  
Tadeusz Knych ◽  
Andrzej Mamala

Due to specific application of the Zn-Cu-Ti alloy rolled sheets as a roofing material, ready-made sheets has to meet some specific requirements of bendability at relatively low temperatures, as low as 5°C. In the current paper it was shown that susceptibility of the Zn-Cu-Ti sheets to low temperature bending, is closely related to degree of its dynamic recrystallization during rolling process. The paper discusses effect of different technological routes on the microstructure, mechanical properties and in particular the low temperature performance of Zn-Cu-Ti rolled sheets. The experimental results shows that the homogenization of Zn-Cu-Ti casted strips at the pre-rolling stage can play important role in recrystallization of the sheets during rolling. The current work is part of research on designing new technological route.


1983 ◽  
pp. 237-267
Author(s):  
D. T. Read

Abstract The mechanical properties of a material describe the relations between the stresses acting on the material and its resulting deformations. Stresses capable of producing permanent deformations, which remain after the stresses are removed, are considered in this chapter. The effects of cryogenic temperatures on the mechanical properties of metals and alloys are reviewed in this chapter; the effects on polymers and glasses are discussed briefly. The fundamental mechanisms controlling temperature-dependent mechanical behavior, phenomena encountered in low-temperature testing, and the mechanical properties of some representative engineering metals and alloys are described. Modifications of test procedures for low temperatures and sources of data are also included.


Author(s):  
Yan Ren ◽  
Jinju Sun ◽  
Rongye Zheng ◽  
Peng Song ◽  
Ke Wang

A single stage cryogenic liquid turbine is designed for a large-scale internal compression air-separation unit to replace the Joule-Thompson valve and recover energy from the liquefied air during throttling process. It includes a 3-dimensional impeller, variable geometry nozzle, and asymmetrical volute. Strength evaluation of such a liquid turbine is both essential and complicated, which involves a proper evaluation of stress acting on the components and mechanical property of the chosen materials at low temperature. For metals under low temperatures, brittle fracture of the metal may occur prior to fatigue damage. A comprehensive consideration of low-temperature mechanical properties of materials and mechanical loads (due to hydrodynamic force and centrifugal force) acting on the components is of particular importance. Aluminum alloy 2031 is used for the turbine impeller and its mechanical properties under low temperatures are analyzed. To evaluate the stress acting on the components, numerical investigation using 3-D incompressible Navier-Stokes Equation together with k-epsilon turbulence model and mixing plane approach at rotator-stator interface are carried out at design and off-design flow with different nozzle-vane settings. The obtained pressure force is transformed into hydrodynamic load acting on the solid surface by means of fluid-solid interaction technology, and then used in the FEM (Finite Element Method) structure analysis together with the centrifugal force. Stress distribution of the component is obtained and deformation of the component analyzed. Evaluation of impeller strength is conducted for the cryogenic liquid turbine by combining the foregoing two aspects, and a use of alloy 2031 for the turbine expander is validated.


2019 ◽  
Vol 91 (3) ◽  
Author(s):  
Abilio Silva ◽  
Bożena Szczucka-Lasota ◽  
Tomasz Węgrzyn ◽  
Adam Jurek

Manufacturers of welding equipment strive to develop the most efficient, cost-effective and easy to process welding methods. This necessity is also related to welding of new, often hard-to-weld steel types. The article aims to present the possibility of welding a high-strength S700MC steel with an increased yield point using MAG (135) process and a blowtorch with an intelligent arc control. The blowtorch allows to reduce input energy and reduce splinters while maintaining the mechanical properties of the material. The S700MC steel has been selected for the tests purposefully, as it may create welding problems in order to maintain high strength and increased yield point. The applied technology provided lower power consumption compared to traditional welding machines and joints with very good mechanical properties were achieved.


2021 ◽  
Vol 268 ◽  
pp. 01066
Author(s):  
Peng Wang ◽  
Zhitao Liu ◽  
Hao Guo ◽  
Xin Liao

The effect of different aging times (1 day, 3 days, 5 days and 7 days) on the combustion performance and mechanical properties of nitroguanidine propellants was studied.Through the mechanical properties test of impact and compression and closed bomb test of the prepared propellants, it was found that the relative steepness of the propellants aged for 3 days under normal and low temperature conditions was all less than 1;Under normal and low temperature conditions, the impact strength of propellants aged for 5 days was the largest;Propellants aged for 7 days had the highest compressive strength at low temperatures and propellants aged for 1 day had the highest compression rate at low temperatures.Comprehensive research results show that aging time of three days has a better improvement in the combustion performance and mechanical properties of the propellants.


Sign in / Sign up

Export Citation Format

Share Document