scholarly journals A SPICE Model for IGBTs and Power MOSFETs Focusing on EMI/EMC in High-Voltage Systems

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2822
Author(s):  
Badri Khvitia ◽  
Anna Gheonjian ◽  
Zviadi Kutchadze ◽  
Roman Jobava

We describe two models of Power Transistors (IGBT, MOSFET); both were successfully used for the analysis of electromagnetic interference (EMI) and electromagnetic compatibility (EMC) while modeling high-voltage systems (PFC, DC/DC, inverter, etc.). The first semi-mathematical–behavioral insulated-gate bipolar transistor (IGBT) model introduces nonlinear negative feedback generated in the semiconductor’s p+ and n+ layers, which are located near the metal contact of the IGBT emitter, to better describe the dynamic characteristics of the transistor. A simplified model of the metal–oxide-semiconductor field-effect transistor (MOSFET) in the IGBT is used to simplify this IGBT model. The second simpler behavioral model could be used to model both IGBTs and MOSFETs. Model parameters are obtained from datasheets and then adjusted using results from a single measurement test. Modeling results are compared with measured turn-on and turn-off waveforms for different types of IGBTs. To check the validation of the models, a brushless DC electric motor test setup with an inverter was created. Despite the simplicity of the presented models, a comparison of model predictions with hardware measurements revealed that the model accurately forecasted switch transients and aided EMI–EMC investigations.

2002 ◽  
Vol 716 ◽  
Author(s):  
Larry Rice

AbstractMicroscopists are faced with many challenges in locating and examining failure sites in the ever-shrinking semiconductor device. The site must be located using electrical characterization techniques like electron beam induced current (EBIC), photo emission microscopy (PEM) or liquid crystal (LC) and then cross-sectioned with a focused ion beam (FIB). Both PEM and LC require the semiconductor circuit to be running near operating conditions which has been observed to locally melt the area of interest, frequently destroying evidence of the failure mechanism. In contrast, EBIC typically can be accomplished at low or no applied voltage eliminating further damage to the circuit. EBIC has been applied to locate leakage sites in high voltage metal oxide semiconductor (MOS) electro static discharge (ESD) reliability failures. In addition to a brief revisit of the basic principles of EBIC and describing a technique to successfully cross section ‘hot spots’ for transmission electron microscopy (TEM) observation, focus will be placed on a case study of the reliability testing failure analysis of ESD power transistors using EBIC, SEM, focused ion beam (FIB), and XTEM.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2149
Author(s):  
Jerzy Baranowski ◽  
Tomasz Drabek ◽  
Paweł Piątek ◽  
Andrzej Tutaj

Electrical devices in the consumer markets need to comply with stringent standards for electromagnetic interference (EMI) distortion and electromagnetic compatibility (EMC). This paper presents the results of measurements of electromagnetic interference generated by an electrical drive of an electric torque tool with a brushless DC motor. The measurements were made in accordance with the PN-EN 55014-1:2017-06E standard, in the frequency band of 148 kHz–30 MHz. The results confirmed that the tested drive can meet the requirements defined in this document. Another document, the PN-EN IEC 61000-3-2:2019-04E standard, provides limits for the harmonic content in the current drawn by electrical devices from a single-phase AC line. This paper also presents the results of measurements related to this standard. Harmonics, up to and including the 40th one, were determined and compared with the limits given in the standard for class B devices. The measurement results indicate a need to use an active power factor corrector (PFC) filter. Such a system has been tested by computer simulations. The results confirmed its ability to meet the requirements of relevant standards.


2020 ◽  
pp. 38-44
Author(s):  
A. V. Polyakov ◽  
M. A. Ksenofontov

Optical technologies for measuring electrical quantities attract great attention due to their unique properties and significant advantages over other technologies used in high-voltage electric power industry: the use of optical fibers ensures high stability of measuring equipment to electromagnetic interference and galvanic isolation of high-voltage sensors; external electromagnetic fields do not influence the data transmitted from optical sensors via fiber-optic communication lines; problems associated with ground loops are eliminated, there are no side electromagnetic radiation and crosstalk between the channels. The structure and operation principle of a quasi-distributed fiber-optic high-voltage monitoring system is presented. The sensitive element is a combination of a piezo-ceramic tube with an optical fiber wound around it. The device uses reverse transverse piezoelectric effect. The measurement principle is based on recording the change in the recirculation frequency under the applied voltage influence. When the measuring sections are arranged in ascending order of the measured effective voltages relative to the receiving-transmitting unit, a relative resolution of 0,3–0,45 % is achieved for the PZT-5H and 0,8–1,2 % for the PZT-4 in the voltage range 20–150 kV.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2316
Author(s):  
Kalparupa Mukherjee ◽  
Carlo De Santi ◽  
Matteo Borga ◽  
Karen Geens ◽  
Shuzhen You ◽  
...  

The vertical Gallium Nitride-on-Silicon (GaN-on-Si) trench metal-oxide-semiconductor field effect transistor (MOSFET) is a promising architecture for the development of efficient GaN-based power transistors on foreign substrates for power conversion applications. This work presents an overview of recent case studies, to discuss the most relevant challenges related to the development of reliable vertical GaN-on-Si trench MOSFETs. The focus lies on strategies to identify and tackle the most relevant reliability issues. First, we describe leakage and doping considerations, which must be considered to design vertical GaN-on-Si stacks with high breakdown voltage. Next, we describe gate design techniques to improve breakdown performance, through variation of dielectric composition coupled with optimization of the trench structure. Finally, we describe how to identify and compare trapping effects with the help of pulsed techniques, combined with light-assisted de-trapping analyses, in order to assess the dynamic performance of the devices.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 777
Author(s):  
Jan Leuchter ◽  
Radim Bloudicek ◽  
Jan Boril ◽  
Josef Bajer ◽  
Erik Blasch

The paper describes the influence of power electronics, energy processing, and emergency radio systems (ERS) immunity testing on onboard aircraft equipment and ground stations providing air traffic services. The implementation of next-generation power electronics introduces potential hazards for the safety and reliability of aircraft systems, especially the interferences from power electronics with high-power processing. The paper focuses on clearly identifying, experimentally verifying, and quantifiably measuring the effects of power electronics processing using switching modes versus the electromagnetic compatibility (EMC) of emergency radio systems with electromagnetic interference (EMI). EMI can be very critical when switching power radios utilize backup receivers, which are used as aircraft backup systems or airport last-resort systems. The switching power electronics process produces interfering electromagnetic energy to create problems with onboard aircraft radios or instrument landing system (ILS) avionics services. Analyses demonstrate significant threats and risks resulting from interferences between radio and power electronics in airborne systems. Results demonstrate the impact of interferences on intermediate-frequency processing, namely, for very high frequency (VHF) radios. The paper also describes the methodology of testing radio immunity against both weak and strong signals in accordance with recent aviation standards and guidance for military radio communication systems in the VHF band.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Abubakar Yakubu ◽  
Zulkifly Abbas ◽  
Nor Azowa Ibrahim ◽  
Ahmad Fahad

In industrial equipment and home appliance applications, the electromagnetic compatibility compliance directive (ECCD) demands that electromagnetic interference side effects be eliminated or marginally minimized. The equipment must not disturb radio and telecommunication as well as other appliances. Additionally the ECCD also governs the immunity of such equipment to interference and seeks to ensure that this equipment is not disturbed by radio emissions when used as intended. Many types of absorbing materials are commercially available. However, many are expensive and not environmentally friendly. It is in the light of the above that we studied the electromagnetic absorption properties of ZnO-PCL nanocomposites prepared from cheap and abundant resources which are environmentally friendly (zinc and polycaprolactone). The test was carried out using a microstrip, open ended coaxial probe, and vector network analyzer. Amongst other findings, result showed that the ZnO-PCL nanocomposite has the capability of attenuating microwave frequency up to −18.2 dB due to their very high specific surface areas attributed to the nanofillers at 12 GHz.


Sign in / Sign up

Export Citation Format

Share Document