scholarly journals Monitoring of the Efficiency and Conditions of Induction Motor Operations by Smart Meter Prototype Based on a LoRa Wireless Network

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1040 ◽  
Author(s):  
A. Cano-Ortega ◽  
F. Sánchez-Sutil

The installation of smart meters in the industry to monitor induction motors (IMs) provides easy access to the measurements of the electrical and mechanical variables, which improves the installation process. Using smart meters in industry requires temporary high-resolution data to improve the energy efficiency (EE) and power factor (PF) of IMs. For these purposes, Long Range (LoRa) is an ideal wireless protocol for the usage in industries due to its low energy consumption. In addition, it provides secure communications and long range indoors and outdoors. LoRa avoids the need to install antennas or routers to extend coverage, as each gateway can service 300 LoRa devices with distances of up to 10 km. For this purpose, this research successfully developed a new prototype for a low-cost IM Efficiency Monitoring System using LoRa (IMEMSL). IMEMSL is based on the Arduino open-source electronic platform. It sends the acquired data through the LoRa low-power wide-area-network (LPWAN) and cloud access gateway. This document describes the hardware and software design and implementation. The experimental results are presented and discussed. Received Signal Strength Indicator (RSSI) and time on air measured endorse the use of LoRa for this type of meters. The approximate cost of the prototype was €72 and €93 for the versions without and with Global Positioning System (GPS), respectively.

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 124 ◽  
Author(s):  
F. Sánchez Sutil ◽  
Antonio Cano-Ortega

The installation of smart meters in smart cities to monitor streetlights (SLs) provides easy access to measurements of electrical variables and lighting levels, which improves the operation of installation. The use of smart meters in cities requires temporary high-resolution data to improve the energy efficiency (EE) of SLs. Long range (LoRa) is an ideal wireless protocol for use in smart cities due to its low energy consumption, secure communications, and long range indoors and outdoors. For this purpose, we developed a low-cost new system and successfully evaluated it by developing three devices, namely the measure and control device for street lights (MCDSL), lighting level measurement device (LLMD) and gateway LoRa network (GWLN), based on the Arduino open-source electronic platform. This paper describes the hardware and software design and its implementation. Further, an algorithm has been developed to enhance the energy efficiency of public lights using MCDSL, the energy efficiency for street lights (EESL) algorithm, that use the illumination level measured on the same set of SLs with a dynamic control, which assumed different lighting levels throughout the night, and adjusted luminous flux based on the traffic intensity of pedestrians. It sends the acquired data through the LoRa low-power wide-area-network (LPWAN) to the cloud.


2021 ◽  
Vol 886 ◽  
pp. 30-41
Author(s):  
Carine Zaraket ◽  
Panagiotis Papageorgas ◽  
Michel Aillerie ◽  
Kyriakos Agavanakis

Internet of things (IoT) technology is based on connecting each real object to the internet. Every single object is uniquely recognized and reachable over the network. IoT last mile connectivity is based on different communication technologies and protocols, where the majority is categorized as short-range networks that operate in ISM band like Zigbee, Wifi and Bluetooth. Short-range technologies were successfully tested and deployed in different industrial sectors. However, in the energy sectors its deployment is challenging in certain hard to reach areas where a reliable last mile connectivity is required between the home area network (HAN) smart meters and the meter data management system (MDMS). Therefore recently, Low Power Wide Area Network (LPWAN) technology, which offers a long range connectivity, has emerged as a promising technology for IoT. Within LPWAN, variety of platforms exist and operate in licensed and unlicensed spectrum respectively like NB-IoT, and LoRaWAN, Sigfox. In this paper we discuss both the performance of LoRaWAN in a real-world environment and its deployment as a low cost, long range and reliable last mile solution for energy smart metering in urban area scenario where short range solution may not work the best. Furthermore, a prototype that is adapted to the existing Lebanese traditional energy sector was developed to test LoRaWAN usefulness in Lebanon.


2021 ◽  
Author(s):  
Evjola Spaho ◽  
Aleksandër Biberaj ◽  
Ares Tahiraga

AbstractRecently, low power wide area networks are attracting a lot of attention by the research community. They are wireless technologies characterized by large coverage area, low bandwidth and long battery life. One of these low power wide area networks technologies, the long range wide area network, can be used for different monitoring applications for health, agriculture, traffic, smart city.In this paper, different simulations and experiments are conducted to implement a low-cost long-range wide area network environmental monitoring application for Tirana city in Albania. Simulation and experimental data are compared and similar results were obtained. In the low-cost implemented system, the gateway can communicate with the sensors placed in strategic positions with long distance covered also using Radio Mobile software.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 878 ◽  
Author(s):  
Sanchez-Sutil ◽  
Cano-Ortega ◽  
Hernandez ◽  
Rus-Casas

Smart meter roll-out in photovoltaic (PV) household-prosumers provides easy access to granular meter measurements, which enables advanced energy services. The design of these services is based on the training and validation of models. However, this requires temporal high-resolution data for generation/load profiles collected in real-world household facilities. For this purpose, this research developed and successfully calibrated a new prototype for an accurate low-cost On-time Single-Phase Power Smart Meter (OSPPSM), which corresponded to these profiles. This OSPPSM is based on the Arduino open-source electronic platform. Not only can it locally store information, but can also wirelessly send these data to cloud storage in real-time. This paper describes the hardware and software design and its implementation. The experimental results are presented and discussed. The OSPPSM demonstrated that it was capable of in situ real-time processing. Moreover, the OSPPSM was able to meet all of the calibration standard tests in terms of accuracy class 1 (measurement error ≤1%) included in the International Electrotechnical Commission (IEC) standards for smart meters. In addition, the evaluation of the uncertainty of electrical variables is provided within the context of the law of propagation of uncertainty. The approximate cost of the prototype was 60 € from eBay stores.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


Mekatronika ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 52-62
Author(s):  
Kwai Yang Sak ◽  
Ahmad Najmuddin Ibrahim

Long Range (LoRa) is a wireless radio frequency technology under the Low Power Wide Area Network (LPWAN). LoRa is able to communicate long range and low energy consumption. The communication range has become an essential element in the wireless radio frequency technology in the Internet of Things (IoT). The presence of LoRa is able IoT application performs in long communication distances with high noise sensitivity ability. People can operate, monitor, and do a variety of tasks from a remote distance. Therefore, this research aims to evaluate the performance of the LoRa connection between radio transceivers in remote locations. The different environment and structural elements affect the LoRa performance. This thesis will be supported by the experiment that LoRa communication in different environments and tests. This experiment tests in line of sight (LOS) and non-line of sight (NLOS). Two sets of LoRa parameters, including Spreading Factor (SF), Bandwidth, and coding rate, are tested in different environments. The experiment tests the LoRa performance in various aspects: received signal strength indicator (RSSI) and packet received ratio (PPR) at different coverage ranges. In addition, the LoRa performance is evaluated in university, residential areas and vegetation areas under similar temperature, weather, and time. The LoRa coverage distance in the vegetation area and university area is reached 900 meters in the LOS test. Still, the vegetation area's signal is more stable and able to receive weaker RSSI signals. The LoRa coverage distance in the NLOS test is shorter compared to the LOS test. NLOS test has only one-third of the LOS LoRa communication distance. It is due to the signal penetration on structural elements such as buildings and woods cause the signal power loss and only transmitting a shorter distance. The LoRa parameter with SF9, 31.25kHz bandwidth and 4/8 coding rate has a better coverage range and stable connection.


BWK ENERGIE. ◽  
2019 ◽  
Vol 71 (01-02) ◽  
pp. 24-25
Author(s):  
Alexander Sommer

IOT | Das Internet der Dinge (IoT) ist bei Stadtwerken zum Trendthema avanciert. Die items GmbH aus Münster, Full-Service-IT-Dienstleister für die Versorgungsbranche, baut aktuell ein interdisziplinäres IoT-Team auf, um Stadtwerke beim Aufbau und Betrieb von Infrastrukturen im Bereich der Long-Range-Wide-Area-Network (LoRaWAN)-Technologie unterstützen zu können. Im Gespräch mit BWK erläutert Alexander Sommer, Leiter Innovation & Transformation, die Strategie von items.


Author(s):  
Deniz TAŞKIN ◽  
Selçuk YAZAR

The Internet of Things (IoT) applications has been developing greatly in recent years to solve communication problems, especially in rural areas. Within the IoT, the context-awareness paradigm, especially in precision agricultural practices, has come to a state of the planning of production time. As smart cities approach, the smart environment approach also increases its place in IoT applications and has dominated research in recent years in literature. In this study, soil and environmental information were collected in 17 km diameter in rural area with developed Long Range (LoRa) based context-aware platform. With the developed sensor and actuator control unit, soil moisture at 5 cm and 30 cm depth and soil surface temperature information were collected and the communication performance was investigated. During the study, the performance measurements of the developed Serial Peripheral Interface (SPI) enabled Long Range Wide Area Network (LoRaWAN) gateway were also performed.


2017 ◽  
Vol 2 (3) ◽  
pp. 112-119 ◽  
Author(s):  
Om-Kolsoom Shahryari ◽  
Amjad Anvari-Moghaddam ◽  
Shadi Shahryari

The smart grid, as a communication network, allows numerous connected devices such as sensors, relays and actuators to interact and cooperate with each other. An Internet-based solution for electricity that provides bidirectional flow of information and power is internet of energy (IoE) which is an extension of smart grid concept. A large number of connected devices and the huge amount of data generated by IoE and issues related to data transmission, process and storage, force IoE to be integrated by cloud computing. Furthermore, in order to enhance the performance and reduce the volume of transmitted data and process information in an acceptable time, fog computing is suggested as a layer between IoE layer and cloud layer. This layer is used as a local processing level that leads to reduction in data transmissions to the cloud. So, it can save energy consumption used by IoE devices to transmit data into cloud because of a long range, low power, wide area and low bit rate wireless telecommunication system which is called LoRaWAN. All devices in fog domain are connected by long range wide area network (LoRa) into a smart gateway.  The gateway which bridges fog domain and cloud, is introduced for scheduling devices/appliances by creating a priority queue which can perform demand side management dynamically. The queue is affected by not only the consumer importance but also the consumer policies and the status of energy resources.


Sign in / Sign up

Export Citation Format

Share Document