scholarly journals A Simulator to Support Machine Learning-Based Wearable Fall Detection Systems

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1831
Author(s):  
Armando Collado-Villaverde ◽  
Mario Cobos ◽  
Pablo Muñoz ◽  
David F. Barrero

People’s life expectancy is increasing, resulting in a growing elderly population. That population is subject to dependency issues, falls being a problematic one due to the associated health complications. Some projects are trying to enhance the independence of elderly people by monitoring their status, typically by means of wearable devices. These devices often feature Machine Learning (ML) algorithms for fall detection using accelerometers. However, the software deployed often lacks reliable data for the models’ training. To overcome such an issue, we have developed a publicly available fall simulator capable of recreating accelerometer fall samples of two of the most common types of falls: syncope and forward. Those simulated samples are like real falls recorded using real accelerometers in order to use them later as input for ML applications. To validate our approach, we have used different classifiers over both simulated falls and data from two public datasets based on real data. Our tests show that the fall simulator achieves a high accuracy for generating accelerometer data from a fall, allowing to create larger datasets for training fall detection software in wearable devices.

Author(s):  
Anita Ramachandran ◽  
Adarsh Ramesh ◽  
Aditya Sukhlecha ◽  
Avtansh Pandey ◽  
Anupama Karuppiah

The application of machine learning techniques to detect and classify falls is a prominent area of research in the domain of intelligent assisted living systems. Machine learning (ML) based solutions for fall detection systems built on wearable devices use various sources of information such inertial motion units (IMU), vital signs, acoustic or channel state information parameters. Most existing research rely on only one of these sources; however, a need to do more experimenation to observe the efficiency of the ML classifiers while coupling features from diverse sources, was felt. In addition, fall detection systems based on wearable devices, require intelligent feature engineering and selection for dimensionality reduction, so as to reduce the computational complexity of the devices. In this paper we do a comprehensive performance analysis of ML classifiers for fall detection, on a dataset we collected. The analysis includes the impact of the following aspects on the performance of ML classifiers for fall detection: (i) using a combination of features from 2 sensors-an IMU sensor and a heart rate sensor, (ii) feature engineering and feature selection based on statistical methods, and (iii) using ensemble techniques for fall detection. We find that the inclusion of heart rate along with IMU sensor parameters improves the accuracy of fall detection. The conclusions from our experimentations on feature selection and ensemble analysis can serve as inputs for researchers designing wearable device-based fall detection systems.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1988 ◽  
Author(s):  
Lourdes Martínez-Villaseñor ◽  
Hiram Ponce ◽  
Jorge Brieva ◽  
Ernesto Moya-Albor ◽  
José Núñez-Martínez ◽  
...  

Falls, especially in elderly persons, are an important health problem worldwide. Reliable fall detection systems can mitigate negative consequences of falls. Among the important challenges and issues reported in literature is the difficulty of fair comparison between fall detection systems and machine learning techniques for detection. In this paper, we present UP-Fall Detection Dataset. The dataset comprises raw and feature sets retrieved from 17 healthy young individuals without any impairment that performed 11 activities and falls, with three attempts each. The dataset also summarizes more than 850 GB of information from wearable sensors, ambient sensors and vision devices. Two experimental use cases were shown. The aim of our dataset is to help human activity recognition and machine learning research communities to fairly compare their fall detection solutions. It also provides many experimental possibilities for the signal recognition, vision, and machine learning community.


2020 ◽  
Vol 20 (6) ◽  
pp. 3303-3313 ◽  
Author(s):  
Kai-Chun Liu ◽  
Chia-Yeh Hsieh ◽  
Hsiang-Yun Huang ◽  
Steen Jun-Ping Hsu ◽  
Chia-Tai Chan

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6479
Author(s):  
Luca Palmerini ◽  
Jochen Klenk ◽  
Clemens Becker ◽  
Lorenzo Chiari

Falling is a significant health problem. Fall detection, to alert for medical attention, has been gaining increasing attention. Still, most of the existing studies use falls simulated in a laboratory environment to test the obtained performance. We analyzed the acceleration signals recorded by an inertial sensor on the lower back during 143 real-world falls (the most extensive collection to date) from the FARSEEING repository. Such data were obtained from continuous real-world monitoring of subjects with a moderate-to-high risk of falling. We designed and tested fall detection algorithms using features inspired by a multiphase fall model and a machine learning approach. The obtained results suggest that algorithms can learn effectively from features extracted from a multiphase fall model, consistently overperforming more conventional features. The most promising method (support vector machines and features from the multiphase fall model) obtained a sensitivity higher than 80%, a false alarm rate per hour of 0.56, and an F-measure of 64.6%. The reported results and methodologies represent an advancement of knowledge on real-world fall detection and suggest useful metrics for characterizing fall detection systems for real-world use.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4565 ◽  
Author(s):  
Fabián Riquelme ◽  
Cristina Espinoza ◽  
Tomás Rodenas ◽  
Jean-Gabriel Minonzio ◽  
Carla Taramasco

Automatic fall detection is a very active research area, which has grown explosively since the 2010s, especially focused on elderly care. Rapid detection of falls favors early awareness from the injured person, reducing a series of negative consequences in the health of the elderly. Currently, there are several fall detection systems (FDSs), mostly based on predictive and machine-learning approaches. These algorithms are based on different data sources, such as wearable devices, ambient-based sensors, or vision/camera-based approaches. While wearable devices like inertial measurement units (IMUs) and smartphones entail a dependence on their use, most image-based devices like Kinect sensors generate video recordings, which may affect the privacy of the user. Regardless of the device used, most of these FDSs have been tested only in controlled laboratory environments, and there are still no mass commercial FDS. The latter is partly due to the impossibility of counting, for ethical reasons, with datasets generated by falls of real older adults. All public datasets generated in laboratory are performed by young people, without considering the differences in acceleration and falling features of older adults. Given the above, this article presents the eHomeSeniors dataset, a new public dataset which is innovative in at least three aspects: first, it collects data from two different privacy-friendly infrared thermal sensors; second, it is constructed by two types of volunteers: normal young people (as usual) and performing artists, with the latter group assisted by a physiotherapist to emulate the real fall conditions of older adults; and third, the types of falls selected are the result of a thorough literature review.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1466 ◽  
Author(s):  
Eduardo Casilari ◽  
Raúl Lora-Rivera ◽  
Francisco García-Lagos

Due to the repercussion of falls on both the health and self-sufficiency of older people and on the financial sustainability of healthcare systems, the study of wearable fall detection systems (FDSs) has gained much attention during the last years. The core of a FDS is the algorithm that discriminates falls from conventional Activities of Daily Life (ADLs). This work presents and evaluates a convolutional deep neural network when it is applied to identify fall patterns based on the measurements collected by a transportable tri-axial accelerometer. In contrast with most works in the related literature, the evaluation is performed against a wide set of public data repositories containing the traces obtained from diverse groups of volunteers during the execution of ADLs and mimicked falls. Although the method can yield very good results when it is hyper-parameterized for a certain dataset, the global evaluation with the other repositories highlights the difficulty of extrapolating to other testbeds the network architecture that was configured and optimized for a particular dataset.


2018 ◽  
Vol 18 (23) ◽  
pp. 9882-9890 ◽  
Author(s):  
Kai-Chun Liu ◽  
Chia-Yeh Hsieh ◽  
Steen Jun-Ping Hsu ◽  
Chia-Tai Chan

2013 ◽  
Vol 647 ◽  
pp. 854-860
Author(s):  
Gye Rok Jeon ◽  
Young Jae Kim ◽  
Ah Young Jeon ◽  
Sang Hoon Lee ◽  
Jae Hyung Kim ◽  
...  

Falls detection systems have been developed in recent years because falls are detrimental events that can have a devastating effect on health of the elderly population. Current fall detecting methods mainly employ accelerometer to discriminate falls from activities of daily living (ADL). However, this makes it difficult to distinguish real falls from certain fall-like activities such as jogging and jumping. In this paper, an accurate fall detection system was implemented using two tri-axial accelerometers. By attaching the accelerometers on the chest and the abdomen, our system can effectively differentiate between falls and non-fall events.The Diff_Z and Sum_diff_Z parameter resulted in falls detection rate of 100%, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3797
Author(s):  
Lokesh Sharma ◽  
Chunghao Chao ◽  
Shih-Lin Wu ◽  
Mei-Chen Li

Older people are very likely to fall, which is a significant threat to the health. However, falls are preventable and are not necessarily an inevitable part of aging. Many different fall detection systems have been developed to help people avoid falling. However, traditional systems based on wearable devices or image recognition-based have many disadvantages, such as user-unfriendly, privacy issues. Recently, WiFi-based fall detection systems try to solve the above problems. However, there is a common problem of reduced accuracy. Since the system is trained at the original signal collecting/training place, however, the application is at a different place. The proposed solution only extracts the features of the changed signal, which is caused by a specific human action. To implement this, we used Channel State Information (CSI) to train Convolutional Neural Networks (CNNs) and further classify the action. We have designed a prototype to test the performance of our proposed method. Our simulation results show an average accuracy of same place and different place is 93.2% and 90.3%, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Anita Ramachandran ◽  
Anupama Karuppiah

With advances in medicine and healthcare systems, the average life expectancy of human beings has increased to more than 80 yrs. As a result, the demographic old-age dependency ratio (people aged 65 or above relative to those aged 15–64) is expected to increase, by 2060, from ∼28% to ∼50% in the European Union and from ∼33% to ∼45% in Asia (Ageing Report European Economy, 2015). Therefore, the percentage of people who need additional care is also expected to increase. For instance, per studies conducted by the National Program for Health Care of the Elderly (NPHCE), elderly population in India will increase to 12% of the national population by 2025 with 8%–10% requiring utmost care. Geriatric healthcare has gained a lot of prominence in recent years, with specific focus on fall detection systems (FDSs) because of their impact on public lives. According to a World Health Organization report, the frequency of falls increases with increase in age and frailty. Older people living in nursing homes fall more often than those living in the community and 40% of them experience recurrent falls (World Health Organization, 2007). Machine learning (ML) has found its application in geriatric healthcare systems, especially in FDSs. In this paper, we examine the requirements of a typical FDS. Then we present a survey of the recent work in the area of fall detection systems, with focus on the application of machine learning. We also analyze the challenges in FDS systems based on the literature survey.


Sign in / Sign up

Export Citation Format

Share Document