scholarly journals Geochemistry Exploration and Geothermometry Application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4442 ◽  
Author(s):  
Rinaldi Idroes ◽  
Muhammad Yusuf ◽  
Saiful Saiful ◽  
Muksin Alatas ◽  
Subhan Subhan ◽  
...  

A geochemistry study has been done in four geothermal manifestations—Ie-Seu’um, Ie-Brôuk, Ie-Jue and the Van-Heutz crater—located in the north zone of Seulawah Agam mountain (Aceh Besar District, Indonesia). The study was performed through water and gas analysis. Water analysis were done for all geothermal manifestations, but gas analysis was only done for the Ie-Jue manifestation that has fumaroles. Cation and anion contents were analyzed by ion chromatography, ICP-OES, alkalimetry titrations, and spectrophotometry, meanwhile isotopes were measured by a Liquid Water Isotope Analyzer. The resulting data were used for fluid and gas geothermometry calculations, and plotted in a FT-CO2 Cross-Plot and a CH4-CO2-H2S triangle diagram to obtain reservoir temperatures. The data were also plotted by a Cl-HCO3-SO4 triangle and Piper diagram to obtain the water type and dominant chemical composition, a Na-K-Mg triangle diagram to obtain fluid equilibria, the isotope ratio in the stable isotope plot to obtain the origin of water, and a N2-He-Ar triangle diagram to establish the origin of fumaroles. The water analysis results showed that (1) Ie-Seu’um has an average reservoir temperature of 241.9 ± 0.3 °C, a chloride water type, a dominant Na-K-Cl chemical composition, a mature water fluid equilibrium, and water of meteoric origin; (2) Ie-Brôuk has an average reservoir temperature of 321.95 ± 13.4 °C, a bicarbonate water type, a dominant Na-Ca-HCO3chemical composition, an immature water fluid equilibrium, and water of meteoric origin; (3) Ie-Jue has an average reservoir temperature of 472.4 ± 91.4 °C, a sulphate water type, a dominant Ca-SO4 chemical composition, an immature water fluid equilibrium and water of meteoric origin; and (4) the Van-Heutz crater has an average reservoir temperature of 439.3 ± 95.3 °C, a sulphate water type, a dominant Ca-SO4 chemical composition, an immature water fluid equilibrium and water of magmatic origin. The results of our gas analysis showed that Ie-Jue has an average reservoir temperature of 258.85 °C, and water of meteoric origin. Based on the reservoir temperatures, the geothermal manifestation of the north zone of Seulawah Agam mountain is considered as a high-temperature geothermal system suitable for power plant development.

2020 ◽  
Vol 1 (1) ◽  
pp. 56-63
Author(s):  
Fajar Rizki Widiatmoko ◽  
Mochammad Nur Hadi ◽  
Dedi Kusnadi ◽  
Sachrul Iswahyudi ◽  
Fadlin Fadlin

Wae Sano volcano is included in the inner Banda arc, Mount Wae Sano is a type C volcano and formed the Sano Nggoang crater lake. The magmatism activity produces geothermal manifestations such as; hot spring, rock alteration, and sulfur deposits, the hottest water temperature is 81 0C, with neutral pH, but the Sano Nggoang Lake water has acid pH. It becomes interesting to examine the characteristics of the geothermal system in that area. The research was conducted by Volcanostratigraphic studies to reconstruct the geological process and Geochemical sampling of hot springs, lake water, ground air, and the soil side to understand the subsurface characterization. The result showing some period of volcano products, with the youngest come from the product of Sano Nggoang 2 that spills its product to on the north-east side of Poco Dedeng volcano. The geochemical analysis shows all manifestations originate from one reservoir, chloride water type, NaCl type of the lake water with a few SO4 influence, presumably, the hot springs supply is influenced by seawater, the estimation of the reservoir has a temperature about ± 230 0C, with dacite and the rich organic sedimentary rock, and located at ± 1456 m from the manifestation, the isothermal section shows the rate of temperature increase at 97.07 m / 10 0C. The hypothetical resource is counted about 1,488.6 kWe.


2021 ◽  
Vol 10 (2) ◽  
pp. 84-93
Author(s):  
Riska Laksmita Sari ◽  
Firman Sabila ◽  
Haeruddin Haeruddin ◽  
Eriska Saputri ◽  
Welayaturromadhona Welayaturromadhona ◽  
...  

Geothermal energy is a renewable alternative energy source. One of the analyses used to determine the characteristics of a geothermal field is water geochemical analysis. The target of this research is the Blawan-Ijen geothermal prospect area, Bondowoso. The geochemical analysis was carried out using AAS, Spectrophotometer and acid-base titration. This survey shows the characteristics of the geothermal system and geothermal fluid in the Blawan area, Ijen. From the chemical analysis of hot water, we found that the types of geothermal water fluids in the Blawan Ijen area vary. In samples BL1, BL2 and BL5 included in the type of Sulphate Water with the dominant elemental Sulphate (SO4) content is also known as Sulfuric Acid Water (Acid-Sulphate Water). Then for the BL4 sample included in the type of chloride water. This type of water is a type of geothermal fluid found in most areas with high-temperature systems. Areas with large-scale hot springs flowing with high Cl concentrations originate from deep reservoirs and indicate permeable zones in those areas. However, this area may not be located above the main upflow zone. There are several other possibilities, such as topographic influences, which can significantly impact hydrological control. The presence of chlorine gas can also identify high zones' permeable areas (e.g., faults, breccia eruptions or conduit). In contrast, BL3 samples are included in the Bicarbonate Water-type. The element HCO3 (bicarbonate) is the most dominant element (main anion) and contains CO2 gas from the chemical analysis results. HCO3 water is generally formed in marginal and near-surface areas in systems dominated by volcanic rocks, where CO2 gas and condensed water vapour into groundwater. The vapour condensation can either heat the groundwater or be heated by steam (steam heated) to form an HCO3 solution


2014 ◽  
Vol 13 (3) ◽  
Author(s):  
Agustinus Denny Unggul Raharjo

<p class="BodyA">South Manokwari Regency is a new autonomous region in West Papua Province with abundant natural resources. As a new autonomous region South Manokwari Regency will be experiencing significant population growth. Population growth along with development and modernization will give burden to electricity demand. Alternatively, electricity can be provided with geothermal resources in Momiwaren District. Based on survey conducted by the government through the Geology Resources Centre in 2009, the reservoir temperature of the geothermal sources is 84<sup>o</sup>C with non volcanic geothermal system. Thus, the geothermal resources in South Manokwari Regency could be developed into binary cycle electric generator.</p>


Resources ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 31
Author(s):  
Stanislav Jacko ◽  
Roman Farkašovský ◽  
Igor Ďuriška ◽  
Barbora Ščerbáková ◽  
Kristína Bátorová

The Pannonian basin is a major geothermal heat system in Central Europe. Its peripheral basin, the East Slovakian basin, is an example of a geothermal structure with a linear, directed heat flow ranging from 90 to 100 mW/m2 from west to east. However, the use of the geothermal source is limited by several critical tectono-geologic factors: (a) Tectonics, and the associated disintegration of the aquifer block by multiple deformations during the pre-Paleogene, mainly Miocene, period. The main discontinuities of NW-SE and N-S direction negatively affect the permeability of the aquifer environment. For utilization, minor NE-SW dilatation open fractures are important, which have been developed by sinistral transtension on N–S faults and accelerated normal movements to the southeast. (b) Hydrogeologically, the geothermal structure is accommodated by three water types, namely, Na-HCO3 with 10.9 g·L−1 mineralization (in the north), the Ca-Mg-HCO3 with 0.5–4.5 g·L−1 mineralization (in the west), and Na-Cl water type containing 26.8–33.4 g·L−1 mineralization (in the southwest). The chemical composition of the water is influenced by the Middle Triassic dolomite aquifer, as well as by infiltration of saline solutions and meteoric waters along with open fractures/faults. (c) Geothermally anomalous heat flow of 123–129 °C with 170 L/s total flow near the Slanské vchy volcanic chain seems to be the perspective for heat production.


2015 ◽  
Vol 15 (12) ◽  
pp. 6943-6958 ◽  
Author(s):  
E. Crosbie ◽  
J.-S. Youn ◽  
B. Balch ◽  
A. Wonaschütz ◽  
T. Shingler ◽  
...  

Abstract. A 2-year data set of measured CCN (cloud condensation nuclei) concentrations at 0.2 % supersaturation is combined with aerosol size distribution and aerosol composition data to probe the effects of aerosol number concentrations, size distribution and composition on CCN patterns. Data were collected over a period of 2 years (2012–2014) in central Tucson, Arizona: a significant urban area surrounded by a sparsely populated desert. Average CCN concentrations are typically lowest in spring (233 cm−3), highest in winter (430 cm−3) and have a secondary peak during the North American monsoon season (July to September; 372 cm−3). There is significant variability outside of seasonal patterns, with extreme concentrations (1 and 99 % levels) ranging from 56 to 1945 cm−3 as measured during the winter, the season with highest variability. Modeled CCN concentrations based on fixed chemical composition achieve better closure in winter, with size and number alone able to predict 82 % of the variance in CCN concentration. Changes in aerosol chemical composition are typically aligned with changes in size and aerosol number, such that hygroscopicity can be parameterized even though it is still variable. In summer, models based on fixed chemical composition explain at best only 41 % (pre-monsoon) and 36 % (monsoon) of the variance. This is attributed to the effects of secondary organic aerosol (SOA) production, the competition between new particle formation and condensational growth, the complex interaction of meteorology, regional and local emissions and multi-phase chemistry during the North American monsoon. Chemical composition is found to be an important factor for improving predictability in spring and on longer timescales in winter. Parameterized models typically exhibit improved predictive skill when there are strong relationships between CCN concentrations and the prevailing meteorology and dominant aerosol physicochemical processes, suggesting that similar findings could be possible in other locations with comparable climates and geography.


2010 ◽  
Vol 64 (1) ◽  
pp. 244-250 ◽  
Author(s):  
Shingo MIYAZAWA ◽  
Takashi YOKOMURO ◽  
Hiromi FUJIWARA ◽  
Kiyoshi KOIBUCHI

2021 ◽  
Author(s):  
Jingnan Shi ◽  
Juan Hong ◽  
Nan Ma ◽  
Qingwei Luo ◽  
Hanbing Xu ◽  
...  

&lt;p&gt;Simultaneous measurements of aerosol hygroscopicity and chemical composition were performed at a suburban site in the North China Plain in winter 2018 using a self-assembled hygroscopic tandem differential mobility analyzer (H-TDMA) and a capture-vaporizer time-of-flight aerosol chemical speciation monitor (CV-ToF-ACSM), respectively. During the experimental period, aerosol particles usually show an external mixture in terms of hygroscopicity, with a less hygroscopic particles mode (LH) and a more hygroscopic mode (MH). The average ensemble mean hygroscopicity parameter (&amp;#954;&lt;sub&gt;mean&lt;/sub&gt;) are 0.16, 0.18, 0.16, and 0.15 for 60, 100, 150, and 200 nm particles, respectively. Two episodes with different RH/T conditions and secondary aerosol formations are distinguished. Higher aerosol hygroscopicity is observed for all measured sizes in the high RH episode (HRH) than in the low RH episode (LRH). In LRH, &amp;#954; decreases as the particle size increases, which may be explained by the large contribution of non- or less-hygroscopic primary compounds in large particles due to the enhanced domestic heating emissions at low temperature. The number fraction of LH mode at 200 nm even exceeds 50%. Closure analysis is carried out between the HTDMA-measured &amp;#954; and the ACSM-derived hygroscopicity using different approximations for the hygroscopic parameters of organic compounds (&amp;#954;&lt;sub&gt;org&lt;/sub&gt;). The results indicate that &amp;#954;&lt;sub&gt;org&lt;/sub&gt; is less sensitive towards the variation of its oxidation level under HRH conditions but has a stronger O: C-dependency under LRH conditions. The difference in the chemical composition and their corresponding physical properties under different RH/T conditions reflects potentially different formation mechanisms of secondary organic aerosols at those two distinct episodes.&lt;/p&gt;


2020 ◽  
Vol 26 (2) ◽  
pp. 266-274
Author(s):  
Flemming Kaul

Abstract The introduction of the folding stool and the single-edged razor into Southern Scandinavia, as well as the testimony of chariot use during the Nordic Bronze Age Period II (1500-1300 BC), give evidence of the transfer of ideas from the Mediterranean to the North. Recent analyses of the chemical composition of blue glass beads from well-dated Danish Bronze Age burials have revealed evidence for the opening of long distance exchange routes around 1400 BC between Egypt, Mesopotamia and South Scandinavia. When including comparative material from glass workshops in Egypt and finds of glass from Mesopotamia, it becomes clear that glass from those distant lands reached Scandinavia. The routes of exchange can be traced through Europe based on finds of amber from the North and glass from the South.


Sign in / Sign up

Export Citation Format

Share Document