scholarly journals Mirroring Solar Radiation Emitting Heat Toward the Universe: Design, Production, and Preliminary Testing of a Metamaterial Based Daytime Passive Radiative Cooler

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4192
Author(s):  
Anna Castaldo ◽  
Giuseppe Vitiello ◽  
Emilia Gambale ◽  
Michela Lanchi ◽  
Manuela Ferrara ◽  
...  

A radiative cooling device, based on a metamaterial able to mirror solar radiation and emit heat toward the universe by the transparency window of the atmosphere (8–13 µm), reaching and maintaining temperatures below ambient air, without any electricity input (passive), could have a significant impact on energy consumption of buildings and positive effects on the global warming prevention. A similar device is expected to properly work if exposed to the nocturnal sky, but during the daytime, its efficacy could be affected by its own heating under direct sunlight. In scientific literature, there are only few evidences of lab scale devices, acting as passive radiative cooling at daytime, and remaining few degrees below ambient air. This work describes the proof of concept of a daytime passive radiative cooler, entirely developed in ENEA labs, capable to reach well 12 °C under ambient temperature. In particular, the prototypal device is an acrylic box case, filled with noble gas, whose top face is a metamaterial deposited on a metal substrate covered with a transparent polymeric film. The metamaterial here tested, obtained by means of a semi-empirical approach, is a spectrally selective coating based on low cost materials, deposited as thin films by sputtering on the metallic substrate, that emits selectively in the 8–13 µm region, reflecting elsewhere UV_VIS_NIR_IR electromagnetic radiation. The prototype during the daytime sky could reach temperatures well beyond ambient temperature. However, the proof of concept experiment performed in a bright clear June day has evidenced some limitations. A critical analysis of the obtained experimental results has done, in order to individuate design revisions for the device and to identify future metamaterial improvements.

2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Ulku Ece Ayli ◽  
Ekin Özgirgin ◽  
Maısarh Tareq

Abstract One of the most promising renewable energy sources is solar energy due to low cost and low harmful emissions, and from the 1980s, one of the most beneficial applications of solar energy is the utilization of solar chimney power plants (SCPP). Recently, with the advancement in computer technology, the use of computational fluid dynamics (CFD) methodology for studying SCPP has become an extensive, robust, and powerful technique. In light of the above, in this study, numerical simulations of an SCPP through three-dimensional axisymmetric modeling is performed. A numerical model is created using CFD software, and the results are verified with an experimental study from the literature. The amount of solar radiation and surrounding weather (ambient temperature) were analyzed, and the effects of the irradiance and air temperature on the output power of the SCPP were studied. Ambient temperature is considered as one of the most important factors that influence collector efficiency in a negative or a positive manner. Solar irradiance is considered to be the most important factor that has an impact on SCPP performance. The investigation includes the study of the relationship between solar insolation and ambient temperatures during the daytime since the difference between the minimum and maximum power values and the performance are very important considering seasonal changes. According to the results, power values are dependent on the amount of solar radiation as well as the ambient temperature, and the importance of selection of location thus climate for an SCPP is found to affect the design of the SCPP.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 144 ◽  
Author(s):  
Mingxue Chen ◽  
Wenqing Li ◽  
Shuang Tao ◽  
Zhenggang Fang ◽  
Chunhua Lu ◽  
...  

Radiative cooling is a passive cooling technology that can cool a space without any external energy by reflecting sunlight and radiating heat to the universe. Current reported radiative cooling techniques can present good outside test results, however, manufacturing an efficient radiative material which can be applied to the market for large-scale application is still a huge challenge. Here, an effective radiative cooling coating with a near-ideal selective emissive spectrum is prepared based on the molecular vibrations of SiOx, mica, rare earth silicate, and molybdate functional nanoparticles. The radiative cooling coating can theoretically cool 45 °C below the ambient temperature in the nighttime. Polyethylene terephthalate (PET) aluminized film was selected as the coating substrate for its flexibility, low cost, and extensive production. As opposed to the usual investigations that measure the substrate temperature, the radiative cooling coating was made into a cubic box to test its space cooling performance on a rooftop. Results showed that a temperature reduction of 4 ± 0.5 °C was obtained in the nighttime and 1 ± 0.2 °C was achieved in the daytime. Furthermore, the radiative cooling coating is resistant to weathering, fouling, and ultraviolet radiation, and is capable of self-cleaning due to its hydrophobicity. This practical coating may have a significant impact on global energy consumption.


2014 ◽  
Vol 27 ◽  
pp. 1460137 ◽  
Author(s):  
RICO CHANDRA ◽  
GIOVANNA DAVATZ ◽  
ULISSE GENDOTTI ◽  
MASSIMO CACCIA ◽  
VALERY CHMILL ◽  
...  

A proof of concept is delivered regarding the performance and feasibility of using silicon photomultiplier (SiPM) solid state light readout devices in noble gas scintillation detectors. By immersing SiPMs directly in the scintillating gas, light collection values can be achieved that are highly competitive with those of PMT based detectors. The work further shows that pulse shape discrimination information is accessible even with the SiPM readout. This proof of concept opens the door for the design of highly rugged, low cost, high performance detectors.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1208 ◽  
Author(s):  
Liu ◽  
Bai ◽  
Fang ◽  
Ni ◽  
Lu ◽  
...  

Radiative cooling can make the selective emitter cool below ambient temperature without any external energy. Recent advances in photonic crystal and metamaterial technology made a high-efficiency selective emitter achievable by precisely controlling the emitter’s Infrared emission spectrum. However, the high cost of the photonic crystals and meta-materials limit their application. Herein, an efficient bilayer selective emitter is prepared based on the molecular vibrations of functional nanoparticles. By optimizing the volume fraction of the functional nanoparticles, the bilayer selective emitter can theoretically cool 36.7 °C and 25.5 °C below the ambient temperature in the nighttime and daytime, respectively. Such an efficient cooling performance is comparable with the published photonic crystal and metamaterial selective emitters. The rooftop measurements show that the bilayer selective emitter is effective in the ambient air even under direct sunlight. The relatively low cost and excellent cooling performance enable the bilayer selective emitter to have great potential for a practical purpose.


2020 ◽  
Vol 20 (2) ◽  
pp. 172-181 ◽  
Author(s):  
Silvia Sciannimanico ◽  
Franco Grimaldi ◽  
Fabio Vescini ◽  
Giovanni De Pergola ◽  
Massimo Iacoviello ◽  
...  

Background: Metformin is an oral hypoglycemic agent extensively used as first-line therapy for type 2 diabetes. It improves hyperglycemia by suppressing hepatic glucose production and increasing glucose uptake in muscles. Metformin improves insulin sensitivity and shows a beneficial effect on weight control. Besides its metabolic positive effects, Metformin has direct effects on inflammation and can have immunomodulatory and antineoplastic properties. Aim: The aim of this narrative review was to summarize the up-to-date evidence from the current literature about the metabolic and non-metabolic effects of Metformin. Methods: We reviewed the current literature dealing with different effects and properties of Metformin and current recommendations about the use of this drug. We identified keywords and MeSH terms in Pubmed and the terms Metformin and type 2 diabetes, type 1 diabetes, pregnancy, heart failure, PCOS, etc, were searched, selecting only significant original articles and review in English, in particular of the last five years. Conclusion: Even if many new effective hypoglycemic agents have been launched in the market in the last few years, Metformin would always keep a place in the treatment of type 2 diabetes and its comorbidities because of its multiple positive effects and low cost.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4214
Author(s):  
Christopher Zuidema ◽  
Cooper S. Schumacher ◽  
Elena Austin ◽  
Graeme Carvlin ◽  
Timothy V. Larson ◽  
...  

We designed and built a network of monitors for ambient air pollution equipped with low-cost gas sensors to be used to supplement regulatory agency monitoring for exposure assessment within a large epidemiological study. This paper describes the development of a series of hourly and daily field calibration models for Alphasense sensors for carbon monoxide (CO; CO-B4), nitric oxide (NO; NO-B4), nitrogen dioxide (NO2; NO2-B43F), and oxidizing gases (OX-B431)—which refers to ozone (O3) and NO2. The monitor network was deployed in the Puget Sound region of Washington, USA, from May 2017 to March 2019. Monitors were rotated throughout the region, including at two Puget Sound Clean Air Agency monitoring sites for calibration purposes, and over 100 residences, including the homes of epidemiological study participants, with the goal of improving long-term pollutant exposure predictions at participant locations. Calibration models improved when accounting for individual sensor performance, ambient temperature and humidity, and concentrations of co-pollutants as measured by other low-cost sensors in the monitors. Predictions from the final daily models for CO and NO performed the best considering agreement with regulatory monitors in cross-validated root-mean-square error (RMSE) and R2 measures (CO: RMSE = 18 ppb, R2 = 0.97; NO: RMSE = 2 ppb, R2 = 0.97). Performance measures for NO2 and O3 were somewhat lower (NO2: RMSE = 3 ppb, R2 = 0.79; O3: RMSE = 4 ppb, R2 = 0.81). These high levels of calibration performance add confidence that low-cost sensor measurements collected at the homes of epidemiological study participants can be integrated into spatiotemporal models of pollutant concentrations, improving exposure assessment for epidemiological inference.


2021 ◽  
Vol 230 ◽  
pp. 111209
Author(s):  
Laura Carlosena ◽  
Ángel Andueza ◽  
Luis Torres ◽  
Olatz Irulegi ◽  
Rufino J. Hernández-Minguillón ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jianhui Gao ◽  
Mengxue Lu ◽  
Yinzhen Sun ◽  
Jingyao Wang ◽  
Zhen An ◽  
...  

Abstract Background The effect of ambient temperature on allergic rhinitis (AR) remains unclear. Accordingly, this study aimed to explore the relationship between ambient temperature and the risk of AR outpatients in Xinxiang, China. Method Daily data of outpatients for AR, meteorological conditions, and ambient air pollution in Xinxiang, China were collected from 2015 to 2018. The lag-exposure-response relationship between daily mean temperature and the number of hospital outpatient visits for AR was analyzed by distributed lag non-linear model (DLNM). Humidity, long-time trends, day of the week, public holidays, and air pollutants including sulfur dioxide (SO2), and nitrogen dioxide (NO2) were controlled as covariates simultaneously. Results A total of 14,965 AR outpatient records were collected. The relationship between ambient temperature and AR outpatients was generally M-shaped. There was a higher risk of AR outpatient when the temperature was 1.6–9.3 °C, at a lag of 0–7 days. Additionally, the positive association became significant when the temperature rose to 23.5–28.5 °C, at lag 0–3 days. The effects were strongest at the 25th (7 °C) percentile, at lag of 0–7 days (RR: 1.32, 95% confidence intervals (CI): 1.05–1.67), and at the 75th (25 °C) percentile at a lag of 0–3 days (RR: 1.15, 95% CI: 1.02–1.29), respectively. Furthermore, men were more sensitive to temperature changes than women, and the younger groups appeared to be more influenced. Conclusions Both mild cold and mild hot temperatures may significantly increase the risk of AR outpatients in Xinxiang, China. These findings could have important public health implications for the occurrence and prevention of AR.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


Sign in / Sign up

Export Citation Format

Share Document