scholarly journals Biorefinery of the Olive Tree—Production of Sugars from Enzymatic Hydrolysis of Olive Stone Pretreated by Alkaline Extrusion

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4517
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
Raquel Iglesias ◽  
Paloma Manzanares

This work addresses for the first time the study of olive stone (OS) biomass pretreatment by reactive extrusion technology using NaOH as the chemical agent. It is considered as a first step in the biological conversion process of the carbohydrates contained in the material into bio-based products. OS is a sub-product of the olive oil extraction process that could be used in a context of a multi-feedstock and multi-product biorefinery encompassing all residues generated around the olive oil production sector. OS biomass is pretreated in a twin-screw extruder at varying temperatures—100, 125 and 150 °C and NaOH/biomass ratios of 5% and 15% (dry weight basis), in order to estimate the effectiveness of the process to favour the release of sugars by enzymatic hydrolysis. The results show that alkaline extrusion is effective in increasing the sugar release from OS biomass compared to the raw material, being necessary to apply conditions of 15% NaOH/biomass ratio and 125 °C to attain the best carbohydrate conversion rates of 55.5% for cellulose and 57.7% for xylan in relation to the maximum theoretical achievable. Under these optimal conditions, 31.57 g of total sugars are obtained from 100 g of raw OS.

2018 ◽  
Vol 7 (1) ◽  
pp. 64-69
Author(s):  
Octovianus S. R. Pasanda ◽  
Abdul Azis

Brown algae is a source of sodium alginat raw material. One type of brown algae that is found to grow in Indonesian waters is Sargassum echinocarphum. Brown algae including one type of seaweed that grows in many waters of Indonesia, especially the waters of Eastern Indonesia. Alginat is a pure polysaccharide of uronic acid contained in a brown algae cell wall arranged in the form of long linear chain alginic acids with levels reaching 40% of the total dry weight. The alginat form in general is sodium alginat, a water soluble alginat salt. The purpose of this research is to know the quality of alginat include alginat rendamen, water content, ash content, and viscosity. Conventional extraction methods from brown algae into sodium alginat produces the highest yield percentage of 32.42%, resulting from the extraction for 7 hours at 60 C. The lowest average yield percentage resulted in 5 hours extraction process of 2.78%, the average water content of 20.37 - 23.30%, the mean ash content of 22.28 - 34.87%, and the viscosity ranged between 18, 0 - 19.8 Cp.


2020 ◽  
Vol 4 (1) ◽  
pp. 17
Author(s):  
Elvianto Dwi Daryono ◽  
Adi Sintoyo ◽  
Rendi Chandra Gunawan

Dalam berat kering biji pepaya mengandung minyak hingga 30% sehingga berpotensi untuk digunakan sebagai bahan baku biodiesel. Transesterifikasi in situ merupakan langkah sederhana dalam menghasilkan biodiesel yaitu dengan cara mengeliminasi proses ekstraksi dan pemurnian minyak sehingga dapat menghemat biaya produksi dan memberikan hasil yang memuaskan. Reaksi satu fase dapat dibentuk dengan menambahkan co-solvent yang dapat meningkatkan kelarutan minyak. N-heksana merupakan co-solvent yang paling baik karena murah, tidak reaktif dan bertitik didih rendah (68oC) sehingga dapat dipisahkan secara co-distilasi bersama-sama dengan metanol. Gelombang mikro dapat merambat melewati cairan sehingga proses pemanasan akan berlangsung lebih efektif dan proses pembuatan biodiesel dapat dilakukan lebih singkat. Pada penelitian ini variasi daya yang digunakan adalah 30%, 50% dan 70% dari 399 watt serta waktu reaksi yaitu 2, 4, 6, 8 dan 10 menit. Hasil kemudian dianalisa menggunakan GC (Gas Chromatography). Didapatkan yield optimum sebesar 89,25% pada daya sebesar 70% dan waktu reaksi 8 menit. Yield optimum memiliki densitas sebesar 0,86 g/cm3 dan memiliki angka asam 0,28 mg KOH/g sampel. Hasil tersebut telah memenuhi SNI 7182:2015.In the dry weight of papaya seed oil contains up to 30%, so the potential to be used as raw material for biodiesel. Transesterification in situ is a simple step to produce biodiesel that is by eliminating extraction process and refining of oil so it can save on production costs and give satisfactory results. The reaction of one phase can be formed by adding a co-solvent to increase the solubility of oils. N-hexane is a co-solvent that is best because it is inexpensive, non-reactive and low boiling point (68°C) so that it can be separated by co-distillation with methanol. Microwave can propagate passed through the liquid so that the heating process will take place more effectively and the process of making biodiesel can be made shorter. In this study the variation of power used is 30%, 50% and 70% of 399 watts and the reaction time is 2,4,6,8 and 10 minutes. Results were analyzed by GC (Gas Chromatography). The optimum yield was 89.25% at 70% power and reaction time 8 minutes. The optimum yield has a density of 0.86 g / cm 3 and has an acid number of 0.28 mg KOH/g sample. These results have met the SNI 7182:2015.


Author(s):  
Andrés Alfonso Gil Montenegro ◽  
Juan Sebastian Arocha Morales ◽  
Lilia Carolina Rojas Pérez ◽  
Paulo César Narváez Rincón

This work presents the simulation in Aspen Plusr of a process to obtain arabinoxylans (AX) from Brewer’s Spent Grain (BSG), which is the major byproduct of the brewing industry. The process is divided into two stages: alkaline pretreatment and enzymatic hydrolysis. These stages cover the extraction of proteins and AX from BSG using an alkaline pretreatment and enzymatic hydrolysis of the AX separated from the liquid stream to obtain xylose, i.e. the substrate required for the fermentation to xylitol. Simulation results show that xylose obtained corresponds to 8,5% of the dry weight of the raw material, obtaining a yield of 58%. Several streams of byproducts were obtained, such as proteins, polypeptides, amino acids, phenolic compounds and lignocellulosic residues that can be valorized in other processes. Simulation was performed in the context of a biorefinery in Colombia.


2021 ◽  
Vol 3 (6 (111)) ◽  
pp. 80-88
Author(s):  
Nadia Chrisayu Natasha ◽  
Latifa Hanum Lalasari ◽  
Lia Andriyah ◽  
Tri Arini ◽  
Fariza Yunita ◽  
...  

Lithium minerals become a sub-economic raw material for lithium production to fulfill the lithium demand. This study is about lithium extraction from mica schist using the roasting and leaching processes. The mica schist located in Kebumen, Indonesia was used to study the phenomena during the lithium extraction process. Sodium sulfate was used as a roasting agent while 0.36 M sulfuric acid was used as a leaching agent. Solid/liquid ratio (1:5, 1:10, 1:15 and 1:20 (g/mL)) and leaching time (30, 60, 90 and 120 minutes) were used as variables in this study. The roasting process was done at 700 °С for 40 minutes while the leaching process was done at 70 °С and 350 rpm. The ratio of additive and mica schist was 1.5:1 (g/g). XRD, ICP-OES, and SEM were used to observe the formed compounds, chemical composition and morphology of the materials. HighScore Plus (HSP) was used to interpret the content of each compound in mica schist, roasted mica schist, and residue. ICP analysis confirmed that the mica schist contains 45.28 ppm of lithium. It is supported by XRD that lithium exists in mica schist as lepidolite (KLi2AlSi4O10(F,OH)2). Sulfate roasting did not affect the type of lepidolite but the lepidolite reactivity against the chemical agent. SEM analysis shows that the roasting process reduced the average particle size from 32.17 to 27.16 µm. ICP analysis of roasted mica schist shows that lithium concentration was reduced from 45.28 to 1.27 ppm. The optimum result from this study was 97.66 % extraction of lithium while solid/liquid ratio was 1:5 (g/ml) and leaching time was 30 minutes. HSP shows that lepidolite contents in initial mica schist, roasted mica schist and residue were 60.6; 24.3 and 18.7 %, respectively. Lithium concentration in the residue according to ICP analysis is 1.06 ppm.


2017 ◽  
Vol 15 (3) ◽  
pp. e0206 ◽  
Author(s):  
Paloma Manzanares ◽  
Encarnación Ruiz ◽  
Mercedes Ballesteros ◽  
María J. Negro ◽  
Francisco J. Gallego ◽  
...  

Olive crop and olive oil industry generates several residues, i.e., olive tree pruning biomass (OTPB), extracted olive pomace (EOP) and olive leaves (OL) that could be used to produce high-added value products in an integrated biorefinery. OTPB is generated in the field as a result of pruning operation to remove old branches; EOP is the main residue of the pomace olive oil extracting industry after extraction with hexane of residual oil contained in olive pomace; and OL comes from the olive cleaning process carried out at olive mills, where small branches and leaves are separated by density. In this work, an analysis of the potential of OTPB, EOP and OL residues was addressed by estimating the production volumes at national level and the spatial distribution of these residues using geographic information system software. Information provided by public institutions and personal surveys to the industries was evaluated. Moreover, chemical analysis of the residues was undertaken and the results used to make a first assessment of valorization into biofuels such as bioethanol and bio based chemicals. Results show that close to 4.2 million tons/year of EOP, OL and OTPB derived from olive oil industry and olive tree cultivation in Spain could be available as a raw material for biorefineries in Spain. The analysis of the chemical characteristics indicates the relevant potential of these feedstocks for the production of bioethanol and other compounds such as phenols based on suitable processing and conversion routes, although techno-economic evaluations must be tackled to refine this approach.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Qi-Zhao Li ◽  
Zheng-Qun Cai

The extraction process of palm seed oil was optimized. Using palm seed as raw material, oil extraction rate was used as an index. The effects of flash extraction, ultrasonic-assisted extraction, supercritical extraction, and aqueous enzymatic extraction on the yield of palm seed oil were investigated. The extraction methods and technological conditions of palm seed oil were optimized by the orthogonal method on the basis of single factor. The seed oil was analyzed and detected. The results showed that the water enzymatic extraction method was the best, and the optimal extraction conditions were as follows: enzymatic hydrolysis time 16 h, enzymatic hydrolysis temperature 50°C, and enzymatic content 2.0%. The oil yield of palm seed was 16.48%. Conclusion. Water enzymatic extraction process of palm seed oil is reasonable, the active ingredients are rich, and the quality of seed oil is better, providing reference for the development and research of palm seed oil.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 525
Author(s):  
Gabriela Espadas-Aldana ◽  
Priscila Guaygua-Amaguaña ◽  
Claire Vialle ◽  
Jean-Pierre Belaud ◽  
Philippe Evon ◽  
...  

The main environmental impact of olive oil production is the disposal of residues such as pomace and water vegetation. During the olive oil extraction process, the olive stone is milled and discharged within the olive pomace. However, olive stone flour can be valorized as filler for polymeric composites. A life cycle assessment of the olive pomace valorization was carried out by focusing on the manufacturing process of a biocomposite made of two different thermoplastic matrices, i.e., polyethylene and polypropylene. The functional unit is the production of 1 m2 of a lath made of an olive pomace-based biocomposite. The analysis was carried out with the SimaPro PhD 9.1.1.1 software, and the database used for the modeling was Ecoinvent 3.6. The obtained results reveal that the hotspot of the whole process is the twin-screw compounding of the olive stone fraction, with the polymeric matrix and coupling agent, and that human health is the most affected damage category. It represents 89% for both scenarios studied: olive stone fraction/polypropylene (OSF/PP) and olive stone fraction/polyethylene (OSF/PE). Further research directions include the use of biosourced polymer matrices, which could reduce the impact of olive pomace-based composite manufacturing.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4746
Author(s):  
Marcela Sofia Pino ◽  
Michele Michelin ◽  
Rosa M. Rodríguez-Jasso ◽  
Alfredo Oliva-Taravilla ◽  
José A. Teixeira ◽  
...  

Agave bagasse is a residual biomass in the production of the alcoholic beverage tequila, and therefore, it is a promising raw material in the development of biorefineries using hot compressed water pretreatment (hydrothermal processing). Surfactants application has been frequently reported as an alternative to enhance monomeric sugars production efficiency and as a possibility to reduce the enzyme loading required. Nevertheless, the surfactant’s action mechanisms in the enzymatic hydrolysis is still not elucidated. In this work, hot compressed water pretreatment was applied on agave bagasse for biomass fractionation at 194 °C in isothermal regime for 30 min, and the effect of non-ionic surfactants (Tween 20, Tween 80, Span 80, and Polyethylene glycol (PEG 400)) was studied as a potential enhancer of enzymatic saccharification of hydrothermally pretreated solids of agave bagasse (AGB). It was found that non-ionic surfactants show an improvement in the conversion yield of cellulose to glucose (100%) and production of glucose (79.76 g/L) at 15 FPU/g glucan, the highest enhancement obtained being 7% regarding the control (no surfactant addition), using PEG 400 as an additive. The use of surfactants allows improving the production of fermentable sugars for the development of second-generation biorefineries.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2579
Author(s):  
Carmen-Alina Bolea ◽  
Mihaela Cotârleț ◽  
Elena Enachi ◽  
Vasilica Barbu ◽  
Nicoleta Stănciuc

Two multi-functional powders, in terms of anthocyanins from black rice (Oryza sativa L.) and lactic acid bacteria (Lactobacillus paracasei, L. casei 431®) were obtained through co-microencapsulation into a biopolymer matrix composed of milk proteins and inulin. Two extracts were obtained using black rice flour as a raw material and hot water and ethanol as solvents. Both powders (called P1 for aqueous extract and P2 for ethanolic extract) proved to be rich sources of valuable bioactives, with microencapsulation efficiency up to 80%, both for anthocyanins and lactic acid bacteria. A higher content of anthocyanins was found in P1, of 102.91 ± 1.83 mg cyanindin-3-O-glucoside (C3G)/g dry weight (DW) when compared with only 27.60 ± 17.36 mg C3G/g DW in P2. The morphological analysis revealed the presence of large, thin, and fragile structures, with different sizes. A different pattern of gastric digestion was observed, with a highly protective effect of the matrix in P1 and a maximum decrease in anthocyanins of approximatively 44% in P2. In intestinal juice, the anthocyanins decreased significantly in P2, reaching a maximum of 97% at the end of digestion; whereas in P1, more than 45% from the initial anthocyanins content remained in the microparticles. Overall, the short-term storage stability test revealed a release of bioactive from P2 and a decrease in P1. The viable cells of lactic acid bacteria after 21 days of storage reached 7 log colony forming units (CFU)/g DW.


Sign in / Sign up

Export Citation Format

Share Document