scholarly journals Evaluation of Medium Voltage Network for Propagation of Supraharmonics Resonance

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1093
Author(s):  
Shimi Sudha Letha ◽  
Angela Espin Delgado ◽  
Sarah K. Rönnberg ◽  
Math H. J. Bollen

Power converters with high switching frequency used to integrate renewable power sources to medium and low voltage networks are sources of emission in the supraharmonic range (2 to 150 kHz). When such converters are connected to a medium voltage (MV) network these supraharmonics propagate through the MV network and can impact network and customer equipment over a wide range. This paper evaluates an existing Swedish MV electrical network and studies the pattern of supraharmonic resonance and the propagation of supraharmonics. The MV network consists of eight feeders including a small wind farm. Simulations reveal that, the bigger the MV network, the more resonant frequencies, but also the lower the amplitude of the resonance peaks in the driving point impedance. It was also identified that for short feeders as length increases, the magnitude of the transfer impedance at supraharmonic frequency decreases. For further increment in feeder length, the magnitude increases or becomes almost constant. For very long feeders, the transfer impedance further starts decreasing. The eight feeders in the network under study are similar but show completely different impedance versus frequency characteristics. Measurements at the MV side of the wind farm show time varying emissions in the supraharmonic range during low power production. The impact of these emissions coupled with system resonance is examined.

2020 ◽  
Vol 10 (21) ◽  
pp. 7719
Author(s):  
Yang Wang ◽  
Ahmet Aksoz ◽  
Thomas Geury ◽  
Salih Baris Ozturk ◽  
Omer Cihan Kivanc ◽  
...  

A modular multilevel converter (MMC) is an advanced voltage source converter applicable to a wide range of medium and high-voltage applications. It has competitive advantages such as quality output performance, high modularity, simple scalability, and low voltage and current rating demand for the power switches. Remarkable studies have been carried out regarding its topology, control, and operation. The main purpose of this review is to present the current state of the art of the MMC technology and to offer a better understanding of its operation and control for stationary applications. In this study, the MMC configuration is presented regarding its conventional and advanced submodule (SM) and overall topologies. The mathematical modeling, output voltage, and current control under different grid conditions, submodule balancing control, circulating current control, and modulation methods are discussed to provide the state of the MMC technology. The challenges linked to the MMC are associated with submodule balancing control, circulating current control, control complexity, and transient performance. Advanced nonlinear and predictable control strategies are expected to improve the MMC control and performance in comparison with conventional control methods. Finally, the power losses associated with the advanced wide bandgap (WBG) power devices (such as SiC, GaN) are explored by using different modulation schemes and switching frequencies. The results indicate that although the phase-shifted carrier-based pulse width modulation (PSC-PWM) has higher power losses, it outputs a better quality voltage with lower total harmonic distortion (THD) in comparison with phase-disposition pulse width modulation (PD-PWM) and sampled average modulation pulse width modulation (SAM-PWM). In addition, WBG switches such as silicon carbide (SiC) and gallium nitride (GaN) devices have lower power losses and higher efficiency, especially at high switching frequency in the MMC applications.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1738
Author(s):  
Vanessa Neves Höpner ◽  
Volmir Eugênio Wilhelm

The use of static frequency converters, which have a high switching frequency, generates voltage pulses with a high rate of change over time. In combination with cable and motor impedance, this generates repetitive overvoltage at the motor terminals, influencing the occurrence of partial discharges between conductors, causing degradation of the insulation of electric motors. Understanding the effects resulting from the frequency converter–electric motor interaction is essential for developing and implementing insulation systems with characteristics that support the most diverse applications, have an operating life under economically viable conditions, and promote energy efficiency. With this objective, a search was carried out in three recognized databases. Duplicate articles were eliminated, resulting in 1069 articles, which were systematically categorized and reviewed, resulting in 481 articles discussing the causes of degradation in the insulation of electric motors powered by frequency converters. A bibliographic portfolio was built and evaluated, with 230 articles that present results on the factors that can be used in estimating the life span of electric motor insulation. In this structure, the historical evolution of the collected information, the authors who conducted the most research on the theme, and the relevance of the knowledge presented in the works were considered.


2013 ◽  
Vol 448-453 ◽  
pp. 1732-1737
Author(s):  
Liu Bin ◽  
Hong Wei Cui ◽  
Li Xu ◽  
Kun Wang ◽  
Zhu Zhan ◽  
...  

This paper analyses the characteristics of large-scale offshore wind farm collection network and the impact of the medium voltage collection system optimization,while from the electrical technology point,it proposes the short circuit current of the collection network computational model and algorithms,based on the principle of equivalent circuit.Taking a wind power coolection system planned for a certain offshore wind farm planning for example, the validity of the model and algorithm is verified.


Electronics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 134 ◽  
Author(s):  
Muhammad Ali ◽  
Muhammad Khan ◽  
Jianming Xu ◽  
Muhammad Faiz ◽  
Yaqoob Ali ◽  
...  

This paper presents a comparative analysis of a new topology based on an asymmetric hybrid modular multilevel converter (AHMMC) with recently proposed multilevel converter topologies. The analysis is based on various parameters for medium voltage-high power electric traction system. Among recently proposed topologies, few converters have been analysed through simulation results. In addition, the study investigates AHMMC converter which is a cascade arrangement of H-bridge with five-level cascaded converter module (FCCM) in more detail. The key features of the proposed AHMMC includes: reduced switch losses by minimizing the switching frequency as well as the components count, and improved power factor with minimum harmonic distortion. Extensive simulation results and low voltage laboratory prototype validates the working principle of the proposed converter topology. Furthermore, the paper concludes with the comparison factors evaluation of the discussed converter topologies for medium voltage traction applications.


Author(s):  
Mohd Ahamad

A new concept in power generation is a microgrid. The Microgrid concept assumes a cluster of loads and microsources operating as a single controllable system that provides power to its local area. This concept provides a new paradigm for defining the operation of distributed generation. The microsources of special interest for MGs are small (<100-kW) units with power electronic interfaces. These sources are placed at customers sites. They are low cost, low voltage and have a high reliability with few emissions. Power electronics provide the control and flexibility required by the MG concept. A properly designed power electronics and controllers insure that the MG can meet the needs of its customers as well as the utilities. The goal of this project is to build a complete model of Microgrid including the power sources, their power electronics, and a load and mains model in THE HOMER. The HOMER Micropower Optimization Model is a computer model developed by the U.S. National Renewable Energy Laboratory (NREL) to assist in the design of micropower systems and to facilitate the comparison of power generation technologies across a wide range of applications. HOMER models a power system’s physical behavior and its life-cycle cost, which is the total cost of installing and operating the system over its life span. HOMER allows the modeler to compare many different design options based on their technical and economic merits. It also assists in understanding and quantifying the effects of uncertainty or changes in the inputs.


2008 ◽  
Vol 1069 ◽  
Author(s):  
Leon Tolbert ◽  
Hui Zhang ◽  
Burak Ozpineci ◽  
Madhu S. Chinthavali

ABSTRACTThe advantages that silicon carbide (SiC) based power electronic devices offer are being realized by using prototype or experimental devices in many different power applications ranging from medium voltage to high voltage or for high temperature or high switching frequency applications. The main advantages of using SiC-based devices are reduced thermal management requirements and smaller passive components which result in higher power density. An overview of the SiC research effort at Oak Ridge National Laboratory (ORNL) and The University of Tennessee (UT) is presented in this paper.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1764
Author(s):  
Salvatore Foti ◽  
Antonio Testa ◽  
Salvatore De Caro ◽  
Luigi Danilo Tornello ◽  
Giacomo Scelba ◽  
...  

A three-phase multi-level multi-input power converter topology is presented for grid-connected applications. It encompasses a three-phase transformer that is operated on the primary side in an open-end winding configuration. Thus, the primary winding is supplied on one side by a three-phase N-level neutral point clamped inverter and, on the other side, by an auxiliary two-level inverter. A key feature of the proposed approach is that the N-level inverter is able to perform independent management of N − 1 input power sources, thus avoiding the need for additional dc/dc power converters in hybrid multi-source systems. Moreover, it can manage an energy storage system connected to the dc-bus of the two-level inverter. The N-level inverter operates at a low switching frequency and can be equipped with very low on-state voltage drop Insulated-Gate Bipolar Transistor (IGBT) devices, while the auxiliary inverter is instead operated at low voltage according to a conventional high-frequency two-level Pulse Width Modulation (PWM) technique and can be equipped with very low on-state resistance Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) devices. Simulations and experimental results confirm the effectiveness of the proposed approach and its good performance in terms of grid current harmonic content and overall efficiency.


2020 ◽  
Author(s):  
Evangelos Pompodakis

<p><b>Conventional power flow (CPF) algorithms assume that the network resistances and reactances remain constant regardless of the weather and loading conditions. Although the impact of the weather in power flow analysis has been recently investigated via the weather-dependent power flow (WDPF) approaches, the magnetic effects in the core of ACSR conductors have not been explicitly considered. ACSR conductors are widely used in distribution networks. Therefore, this manuscript proposes a three-phase weather-dependent power flow algorithm for 4-wire multi-grounded unbalanced microgrids (MGs), which takes into consideration the impact of weather as well as the magnetic effects in the core of ACSR conductors. It is shown that the magnetic effects in the core can significantly influence the power flow results, especially for networks composed of single-layer ACSR conductors. Furthermore, the proposed algorithm explicitly considers the multi-grounded neutral conductor, thus it can precisely simulate unbalanced low voltage (LV) and medium voltage (MV) networks. In addition, the proposed approach is generic and can be applied in both grid-connected and islanded networks. Simulations conducted in a 25-Bus unbalanced LV microgrid highlight the accuracy and benefit of the proposed approach. </b></p>


Author(s):  
D.Srinivasa Rao & Dr. Anupama A. Deshpande

This paper proposes dual active bridge (DAB) based high frequency power electronic transformer (PET) for interconnecting medium voltage dc (MVDC) and low voltage dc (LVDC) grids for dc power distribution. The above proposed concept works on dual active phase shift principle and square wave HF modulation technique for bidirectional power transfer. Compared to the traditional dc transformer scheme, The proposed power electronic transformer (PET) can disconnect from LVDC distribution grid effectively as a dc breaker when a short circuit fault occurs in the distribution grid. The isolated DC-DC PET topology with a wide range of voltage conversion ratio is useful for High Voltage DC tapping. The DAB based on switched capacitor is connected to the medium voltage DC side and acts as an inverter. The proposed topology has the ability to transfer higher power, and lower circulating power, lower high frequency link voltage, and RMS current and peak values with the same transmission power in the MVDC side. This paper analyzes the topology, voltage and power characterization, control strategy in detail. Increase in the intermediate AC frequency will reduce the size of the transformer and other passive elements significantly in the circuit. The theoretical analysis is supported by MATLAB simulation.


2020 ◽  
Author(s):  
Evangelos Pompodakis

<p><b>Conventional power flow (CPF) algorithms assume that the network resistances and reactances remain constant regardless of the weather and loading conditions. Although the impact of the weather in power flow analysis has been recently investigated via the weather-dependent power flow (WDPF) approaches, the magnetic effects in the core of ACSR conductors have not been explicitly considered. ACSR conductors are widely used in distribution networks. Therefore, this manuscript proposes a three-phase weather-dependent power flow algorithm for 4-wire multi-grounded unbalanced microgrids (MGs), which takes into consideration the impact of weather as well as the magnetic effects in the core of ACSR conductors. It is shown that the magnetic effects in the core can significantly influence the power flow results, especially for networks composed of single-layer ACSR conductors. Furthermore, the proposed algorithm explicitly considers the multi-grounded neutral conductor, thus it can precisely simulate unbalanced low voltage (LV) and medium voltage (MV) networks. In addition, the proposed approach is generic and can be applied in both grid-connected and islanded networks. Simulations conducted in a 25-Bus unbalanced LV microgrid highlight the accuracy and benefit of the proposed approach. </b></p>


Sign in / Sign up

Export Citation Format

Share Document