scholarly journals Development of Siloxane Coating with Oxide Fillers for Kesteritic (CZTS) Photovoltaic Systems

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2142
Author(s):  
Alisa A. Tatarinova ◽  
Aleksandr S. Doroshkevich ◽  
Olga Yu. Ivanshina ◽  
Oleg S. Pestov ◽  
Maria Balasoiu ◽  
...  

Photovoltaic systems (PV) based on Cu2ZnSn(S, Se)4 (CZTS) solar cells have demonstrated efficiency and high performance. According to the results of comparative studies, the kesterite structure has proven to be ecologically safe and less expensive than other photovoltaic systems. The goal of the present study was to design a disposable high-temperature transparent electrical insulating coating to cover metal plates for photovoltaic devices based on CZTS. The solution was to replace electrically conductive metallics dispersed in a high-temperature siloxane coating with phonon thermal conductivity ceramic particles. Properties of the obtained coating were investigated using different methods. A mathematical model of thermal processes in the film during heating was also developed. For the control sample and the sample with a heat-conducting filler, a quantitative ratio of thermal conductivity was obtained. The research results confirmed the necessary properties of the coating, including resistance to short-term exposure to high temperatures during the synthesis of kesterite.

Author(s):  
Alisa A. Tatarinova ◽  
Oleksandr S. Doroshkevich ◽  
Olga Yu. Ivanshina ◽  
Oleg S. Pestov ◽  
Maria Balasoiu ◽  
...  

The work focused on the development of high-temperature electrical insulation coatings for film photovoltaics. The idea was into replacing the electroconductive metal dispersed phase in siloxane high-temperature coating to ceramic particles with phonon thermal conductivity. The slurry of industrial composition based on polysiloxane lacquer and thermally conductive paste containing zinc oxide was centrifuged to obtain a thin, optically transparent coating with the destruction temperature of over 600 °C. Topology, electrical properties, and thermal conductivity of the resulting film were investigated. The mathematical model of thermal processes in films in the course of heating was figured out. Quantitatively the relation of thermal conductivities of a control sample and a sample with a heat-conducting filler was established. The effectiveness of using this technology is shown.


Author(s):  
Carmen Hille ◽  
Wolfgang Lippmann ◽  
Marion Herrmann ◽  
Antonio Hurtado

Research and development are increasingly focusing on the provision and utilization of heat in the high-temperature range above 900 °C, in particular under the aspect of resource-saving energy technologies. On the one hand, the exploitation of the high-temperature range helps to improve the efficiency of energy conversion processes; on the other hand, the provision of high-temperature heat makes it possible to utilize innovative thermochemical processes, which in turn represent environmentally compatible processes. An example to be quoted here is the thermally induced production of hydrogen by the iodine-sulfur process. The high temperatures alone place extremely high requirements on the materials to be used so that metallic materials soon reach their limits of application. If additionally chemically aggressive process media are used, as in the iodine-sulfur process, basically only ceramic materials can be considered as construction materials. In this application, notably silicon carbide (SiC) is favored owing to its excellent high-temperature properties. The possible technical fields of application of such high-performance ceramics can be broadly extended provided that suitable, highly efficient joining methods are available for these ceramics. In addition to its use as a constructional ceramic, SiC can principally also be used as a functional ceramic. For this purpose, the basic ceramic is modified with different additives, providing it with electrical properties that permit its application as a full ceramic heat conductor or sensor. In this case, it also holds true that a suitable joining method for making electrically conductive joints will extend the fields of application considerably. Laser-based joining technologies are being developed for both applications at the Dresden University of Technology. The research work presented here notably focuses on laser joining of electrically conductive SiC ceramics. In addition to a CO2 laser, a diode laser has been used. Basically, electrical connection has been made in two ways. In the first variants, graphite pins are inserted into the joining zone as electrically conductive bridges. In an alternative concept, the oxidic glass filler itself is made electrically conductive with additives. Like that a full ceramic heating conductor joined by means of laser radiation has been tested. The temperature resistance and functionality of the laser-joined heating conductor could be fully demonstrated.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1833 ◽  
Author(s):  
Dong Lu ◽  
Zhuo Tang ◽  
Liang Zhang ◽  
Jianwei Zhou ◽  
Yue Gong ◽  
...  

Concrete has low porosity and compact microstructure, and thus can be vulnerable to high temperature, and the increasing application of various types of supplementary cementitious materials (SCMs) in concrete makes its high-temperature resistant behavior more complex. In this study, we investigate the effects of four formulations with typical SCMs combinations of fly ash (FA), ultra-fine fly ash (UFFA) and metakaolin (MK), and study the effects of SCMs combinations on the thermal performance, microstructure, and the crystalline and amorphous phases evolution of concrete subjected to high temperatures. The experimental results showed that at 400 °C, with the addition of 20% FA (wt %), the thermal conductivity of the sample slightly increased to 1.5 W/(m·K). Replacing FA with UFFA can further increase the thermal conductivity to 1.7 W/(m·K). Thermal conductivity of concrete slightly increased at 400 °C and significantly reduced at 800 °C. Further, combined usage of SCMs delayed and reduced micro-cracks of concrete subjected to high temperatures. This study demonstrates the potential of combining the usage of SCMs to promote the high-temperature performance of concrete and explains the micro-mechanism of concrete containing SCMs at high temperatures.


Author(s):  
Т.А. Шалыгина ◽  
А.В. Мележик ◽  
А.Г. Ткачев ◽  
С.Ю. Воронина ◽  
В.Д. Ворончихин ◽  
...  

A hybrid heat-conducting filler based on graphene nanoplates and multi-walled nanotubes was obtained to increase the thermal conductivity of an epoxy binder, exhibiting a synergistic effect. This effect is achieved due to the embedding of multi-walled nanotubes between graphene nanoplates and the formation of effective percolation networks in the composite. The dependence of an increase in the thermal conductivity of an epoxy composite on the mass ratio of graphene nanoplates and multi-walled nanotubes in a mixture of a hybrid filler has been established. The effect of the hybrid filler concentration in the epoxy matrix and the mixing method of graphene nanoplates and multi-walled nanotubes on the thermal conductivity of the composite was found. A synergistic effect between graphene nanoplates and multi-walled nanotubes has been demonstrated, leading to a sixfold increase in the thermal conductivity of epoxy composites at a filler concentration of 5 wt%.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
YanJie Guo ◽  
Fei Lu ◽  
Lei Zhang ◽  
HeLei Dong ◽  
QiuLin Tan ◽  
...  

In order to identify suitable substrate materials for sue in high-temperature pressure sensors that can operate above 1000°C, the high-temperature properties of four high-performance ceramics (99% pure Al2O3 (99Al2O3), 97% pure Al2O3 (97Al2O3), sapphire, and ZrO2) were investigated. Three-point bend testing was used to measure the flexural strengths and flexural moduli of these ceramics, and transient laser emission was used to measure their thermal conductivities. The samples were prepared by hot-press sintering: plates with the dimensions of 3.5 × 5 × 50 mm3 for the bend testing and rods of φ12.5 × 1.5 mm3 for the thermal conductivity measurements. Curves showing the dependence of flexural strength, flexural modulus, and thermal conductivity on temperature were obtained. The results show that the flexural strength and thermal conductivity of sapphire are much greater than those of the other ceramics tested. Thus, we conclude that sapphire is the most appropriate of these materials for use in high-temperature pressure sensors for operation at up to 1000°C.


2018 ◽  
Vol 2018 (HiTEC) ◽  
pp. 000051-000055
Author(s):  
Maciej Patelka ◽  
Nicholas Krasco ◽  
Sho Ikeda ◽  
Toshiyuki Sato ◽  
Miguel Goni ◽  
...  

Abstract High power semiconductor applications require a die attach material with high thermal conductivity to efficiently release the heat generated from these devices. Current die attach solutions such as eutectic solders and high thermal conductive silver epoxies and sintered silver adhesives have been industry standards, however may fall short in performance for high temperature or high stress applications. This presentation will focus on development of a reinforced, sintered silver die attach solution for high power semiconductor applications with focus on a pressure-less, low temperature sintering technology that offers high reliability for high temperature (250°C) applications. The electronic, optoelectronic, and semiconductor industries have the need for high performance adhesives, in particular, high power devices require low-stress, high thermal conductivity, thermally stable, and moisture resistant adhesives for the manufacture of high reliability devices. This paper introduces a new reinforced sintered silver adhesive based on the “resin-free” Conductive Fusion Technology. The high performance adhesive offers a robust solution for high temperature, high reliability applications. Conductive Fusion Technology consists of a high thermal conductivity silver component blended with a non-conductive, low-modulus powder component. The non-conductive powder component comprises an organically modified inorganic material that exhibits excellent thermal stability at temperatures exceeding 250°C. Properties of the sintered silver adhesive, such as storage modulus, can be modified by varying the content of the non-conductive component.


Alloy Digest ◽  
2005 ◽  
Vol 54 (12) ◽  

Abstract Wieland K-88 is a copper alloy with very high electrical and thermal conductivity, good strength, and excellent stress relaxation resistance at elevated temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CU-738. Producer or source: Wieland Metals Inc.


Alloy Digest ◽  
1999 ◽  
Vol 48 (1) ◽  

Abstract Olin C197 is a second-generation high performance alloy developed by Olin Brass. It has a strength and bend formability similar to C194 (see Alloy Digest Cu-360, September 1978), but with 25% higher electrical and thermal conductivity. High conductivity allows C197 to replace brasses and bronzes in applications where high current-carrying capability is required. Also, the strength of C197 provides higher contact forces when substituted for many lower strength coppers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming and joining. Filing Code: CU-627. Producer or source: Olin Brass.


Alloy Digest ◽  
1990 ◽  
Vol 39 (2) ◽  

Abstract ARMCO PH 13-8Mo is designed for high-performance applications requiring high strength coupled with excellent resistance to corrosion and stress corrosion. It has excellent toughness, good transverse properties and excellent forgeability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-224. Producer or source: Baltimore Specialty Steels Corporation. Originally published May 1969, revised February 1990.


Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract Incoloy Alloy 864 is a high performance alloy developed specifically for automotive exhaust system flexible couplings and other exhaust applications. The alloy has a good combination of oxidation and corrosion resistance, with good mechanical strength, stability, and fatigue properties. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on high temperature performance and corrosion resistance as well as joining. Filing Code: SS-708. Producer or source: Inco Alloys International Inc.


Sign in / Sign up

Export Citation Format

Share Document