scholarly journals Assessment on the Application of Facilitated Transport Membranes in Cement Plants for CO2 Capture

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4772
Author(s):  
Maria-Chiara Ferrari ◽  
Antonio Amelio ◽  
Giuseppe Marino Nardelli ◽  
Riccardo Costi

Carbon dioxide capture from cement plant flue gas can play an important role in mitigating CO2 emission that lead to climate change. Among all the technologies evaluated, membranes have potential to be one of the most energy-efficient and low-cost CO2 capture option. In this work, a novel membrane technology, Facilitated Transport Membranes (FTMs), is assessed to further reduce energy demand and cost for CO2 capture in a cement plant. A new process that employs FTMs is simulated and applied to a real clinker production plant in Italy (Colacem, Gubbio). The process is then compared with other carbon capture technologies. Results show that the FTM technology can be competitive with other technologies despite the need of steam to operate the membrane. Despite the benefit in terms of specific emission compared to more established absorption with liquid amines process, further improvements on membrane performances are needed to gain also an economic advantage for carbon capture in the cement industry.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5692 ◽  
Author(s):  
Marta G. Plaza ◽  
Sergio Martínez ◽  
Fernando Rubiera

The implementation of carbon capture, use, and storage in the cement industry is a necessity, not an option, if the climate targets are to be met. Although no capture technology has reached commercial scale demonstration in the cement sector yet, much progress has been made in the last decade. This work intends to provide a general overview of the CO2 capture technologies that have been evaluated so far in the cement industry at the pilot scale, and also about the current plans for future commercial demonstration.


2019 ◽  
Vol 17 (1) ◽  
pp. 9-13
Author(s):  
А. Zhumagaliyeva ◽  
V. Gargiulo ◽  
F. Raganat ◽  
Ye. Doszhanov ◽  
M. Alfe

Carbon capture and sequestration contains a group of technologies keeping thedifferentiation of CO2 from large industrial and energy related sources, transport toa storage location and long-term isolation from the atmosphere. Previous studiesof CO2 adsorption on low-cost iron metal oxide surfaces strongly encourage thepossible use of metal oxide as sorbents, but the tendency of magnetite particles toagglomerate causes a lowering of CO2 sorption capacity. This work investigates theadsorption behavior of CO2 on composite materials prepared coating a low-costcarbonized rice husk (cRH), commercial carbon black (CB) with magnetite fineparticles. The CO2 capture capacity of composites and based on rice husk materialswas evaluated the basis of the breakthrough times measured at atmosphericpressure and room temperature in a lab-scale fixed bed micro-reactor. To thisaim the reactor has been firstly operated for CO2 adsorption data with obtainedsamples.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8279
Author(s):  
Silviya Boycheva ◽  
Ivan Marinov ◽  
Denitza Zgureva-Filipova

At present, mitigating carbon emissions from energy production and industrial processes is more relevant than ever to limit climate change. The widespread implementation of carbon capture technologies requires the development of cost-effective and selective adsorbents with high CO2 capture capacity and low thermal recovery. Coal fly ash has been extensively studied as a raw material for the synthesis of low-cost zeolite-like adsorbents for CO2 capture. Laboratory tests for CO2 adsorption onto coal fly ash zeolites (CFAZ) reveal promising results, but detailed computational studies are required to clarify the applicability of these materials as CO2 adsorbents on a pilot and industrial scale. The present study provides results for the validation of a simulation model for the design of adsorption columns for CO2 capture on CFAZ based on the experimental equilibrium and dynamic adsorption on a laboratory scale. The simulations were performed using ProSim DAC dynamic adsorption software to study mass transfer and energy balance in the thermal swing adsorption mode and in the most widely operated adsorption unit configuration.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6865
Author(s):  
Alexander García-Mariaca ◽  
Eva Llera-Sastresa

The transport sector powered by internal combustion engines (ICE) requires novel approaches to achieve near-zero CO2 emissions. In this direction, using CO2 capture and storage (CCS) systems onboard could be a good option. However, CO2 capture in mobile sources is currently challenging due to the operational and space requirements to install a CCS system onboard. This paper presents a systematic review of the CO2 capture in ICE driven transport to know the methods, techniques, and results of the different studies published so far. Subsequently, a case study of a CCS system working in an ICE is presented, where the energy and space needs are evaluated. The review reveals that the most suitable technique for CO2 capture is temperature swing adsorption (TSA). Moreover, the sorbents with better properties for this task are PPN-6-CH2-DETA and MOF-74-Mg. Finally, it shows that it is necessary to supply the energy demand of the CCS system and the option is to take advantage of the waste heat in the flue gas. The case study shows that it is possible to have a carbon capture rate above 68% without affecting engine performance. It was also found that the total volume required by the CCS system and fuel tank is 3.75 times smaller than buses operating with hydrogen fuel cells. According to the review and the case study, it is possible to run a CCS system in the maritime sector and road freight transport.


Author(s):  
Peng Pei ◽  
Manohar Kulkarni

Integrated Gasification Combined Cycle (IGCC) is believed to be one of the most promising technologies to offer electricity and other de-carbon fuels with carbon capture requirement at a relatively low cost. With the process of carbon dioxide capture, it can also actually meet strict regulations for other pollutants emission. However, the performances can vary depending on what kinds of technologies or processes are used. This paper has developed a model and calculated by using Engineering Equation Solver (EES) program to determine and compare different available technologies and processes. There are four main components in the model: Gasification Island; Gas Cleanup Island; Carbon Dioxide Capture Island and Power Island. Among them, the different options of Gasification Island; and Carbon Dioxide Capture Island are expected to be the most effective factors to influence the performance of the plant. Therefore, different gasification processes are examined in this paper, including Shell, GE (Texaco) and Lurgi. The carbon dioxide capture processes are based on SELEXOL, a physical absorption process, because of the high partial pressure of carbon dioxide in the syngas. A process called “double-absorption” is used for capturing sulfur compounds and carbon dioxide. This paper calculated and compared the net outputs, efficiency penalties for CO2 capture part, and net plant efficiencies for different technologies and processes by using EES program. This model tries to treat the IGCC with carbon dioxide capture part as a whole thermal system, instead of just looking at the capture system alone. Different gasification technologies mentioned above will result in various paths and efficiencies of using steam and waste energy in the system. It will make reasonable use of various waste energies and steams for both mechanical and chemical processes to improve the performance of the plant, and incorporate a CO2 capture system into the design concept of the power plant.


2020 ◽  
pp. 127405 ◽  
Author(s):  
Saravanan Janakiram ◽  
Fabio Santinelli ◽  
Riccardo Costi ◽  
Arne Lindbråthen ◽  
Giuseppe Marino Nardelli ◽  
...  

2020 ◽  
Author(s):  
Nayyereh hatefi ◽  
William Smith

<div>Ideal{gas thermochemical properties (enthalpy, entropy, Gibbs energy, and heat capacity, Cp) of 49 alkanolamines potentially suitable for CO2 capture applications and their carbamate and protonated forms were calculated using two high{order electronic structure methods, G4 and G3B3 (or G3//B3LYP). We also calculate for comparison results from the commonly used B3LYP/aug-cc-pVTZ method. This data is useful for the construction of molecular{based thermodynamic models of CO2 capture processes involving these species. The Cp data for each species over the temperature range 200 K{1500 K is presented as functions of temperature in the form of NASA seven-term polynomial expressions, permitting the set of thermochemical properties to be calculated over this temperature range. The accuracy of the G3B3 and G4 results is estimated to be 1 kcal/mol and the B3LYP/aug-cc-pVTZ results are of nferior quality..</div>


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 357
Author(s):  
Pedro Moura ◽  
José Ignacio Moreno ◽  
Gregorio López López ◽  
Manuel Alvarez-Campana

University campuses are normally constituted of large buildings responsible for high energy demand, and are also important as demonstration sites for new technologies and systems. This paper presents the results of achieving energy sustainability in a testbed composed of a set of four buildings that constitute the Telecommunications Engineering School of the Universidad Politécnica de Madrid. In the paper, after characterizing the consumption of university buildings for a complete year, different options to achieve more sustainable use of energy are presented, considering the integration of renewable generation sources, namely photovoltaic generation, and monitoring and controlling electricity demand. To ensure the implementation of the desired monitoring and control, an internet of things (IoT) platform based on wireless sensor network (WSN) infrastructure was designed and installed. Such a platform supports a smart system to control the heating, ventilation, and air conditioning (HVAC) and lighting systems in buildings. Furthermore, the paper presents the developed IoT-based platform, as well as the implemented services. As a result, the paper illustrates how providing old existing buildings with the appropriate technology can contribute to the objective of transforming such buildings into nearly zero-energy buildings (nZEB) at a low cost.


2014 ◽  
Vol 61 ◽  
pp. 365-368 ◽  
Author(s):  
Chunfeng Song ◽  
Yasuki Kansha ◽  
Masanori Ishizuka ◽  
Qian Fu ◽  
Atsushi Tsutsumi

Sign in / Sign up

Export Citation Format

Share Document