scholarly journals Review on Carbon Capture in ICE Driven Transport

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6865
Author(s):  
Alexander García-Mariaca ◽  
Eva Llera-Sastresa

The transport sector powered by internal combustion engines (ICE) requires novel approaches to achieve near-zero CO2 emissions. In this direction, using CO2 capture and storage (CCS) systems onboard could be a good option. However, CO2 capture in mobile sources is currently challenging due to the operational and space requirements to install a CCS system onboard. This paper presents a systematic review of the CO2 capture in ICE driven transport to know the methods, techniques, and results of the different studies published so far. Subsequently, a case study of a CCS system working in an ICE is presented, where the energy and space needs are evaluated. The review reveals that the most suitable technique for CO2 capture is temperature swing adsorption (TSA). Moreover, the sorbents with better properties for this task are PPN-6-CH2-DETA and MOF-74-Mg. Finally, it shows that it is necessary to supply the energy demand of the CCS system and the option is to take advantage of the waste heat in the flue gas. The case study shows that it is possible to have a carbon capture rate above 68% without affecting engine performance. It was also found that the total volume required by the CCS system and fuel tank is 3.75 times smaller than buses operating with hydrogen fuel cells. According to the review and the case study, it is possible to run a CCS system in the maritime sector and road freight transport.

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 525 ◽  
Author(s):  
Edwin R. Grijalva ◽  
José María López Martínez

The emissions of CO2 gas caused by transport in urban areas are increasingly serious, and the public transport sector plays a vital role in society, especially when considering the increased demands for mobility. New energy technologies in urban mobility are being introduced, as evidenced by the electric vehicle. We evaluated the positive environmental effects in terms of CO2 emissions that would be produced by the replacement of conventional urban transport bus fleets by electric buses. The simulation of an electric urban bus conceptual model is presented as a case study. The model is validated using the speed and height profiles of the most representative route within the city of Madrid—the C1 line. We assumed that the vehicle fleet is charged using the electric grid at night, when energy demand is low, the cost of energy is low, and energy is produced with a large provision of renewable energy, principally wind power. For the results, we considered the percentage of fleet replacement and the Spanish electricity mix. The analysis shows that by gradually replacing the current fleet of buses by electric buses over 10 years (2020 to 2030), CO2 emissions would be reduced by up to 92.6% compared to 2018 levels.


2021 ◽  
Vol 15 (2) ◽  
pp. 8153-8168
Author(s):  
Saeed Chamehsara ◽  
Mohammadreza Karami

In order to repair internal combustion engines, sometimes it is necessary to replace the components of these engines with each other. Therefore changes in engine performance are inevitable in these conditions. In the present study, by changing the coneccting rod and the crank of the OM457 turbo diesel-fueled engine with the OM444, it was observed that the performance of the engine decreases. Numerical simulations have been carried out to study the Possible ways to mitigate this reduction. One way to achieve this goal is to change the fuel injector’s characteristics such as, fuel injector’s nozzle hole diameter, number of nozzle holes, and start time of fuel injection. In this study, the impact of these parameters on the performance and emissions of these engines were analyzed. Another scenario is an increase in inlet fuel and air by the same amount. The results indicate that By reducing the diameter of fuel injector holes and hole numbers, the performance of the engine was increased. on the other hand, the NOx emissions were increased while the amount of soot emission decreased. The same results were concluded by retarding the start time of injection. Subsequently, a case study of changing fuel injector parameters for mitigation of decreased performance was performed. These parameters were simultaneously applied, and results were compared. The performance of the engine with improved injector’s characteristics was close to the main OM457. Similar results were obtained by increasing the amount of inlet air and fuel.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4772
Author(s):  
Maria-Chiara Ferrari ◽  
Antonio Amelio ◽  
Giuseppe Marino Nardelli ◽  
Riccardo Costi

Carbon dioxide capture from cement plant flue gas can play an important role in mitigating CO2 emission that lead to climate change. Among all the technologies evaluated, membranes have potential to be one of the most energy-efficient and low-cost CO2 capture option. In this work, a novel membrane technology, Facilitated Transport Membranes (FTMs), is assessed to further reduce energy demand and cost for CO2 capture in a cement plant. A new process that employs FTMs is simulated and applied to a real clinker production plant in Italy (Colacem, Gubbio). The process is then compared with other carbon capture technologies. Results show that the FTM technology can be competitive with other technologies despite the need of steam to operate the membrane. Despite the benefit in terms of specific emission compared to more established absorption with liquid amines process, further improvements on membrane performances are needed to gain also an economic advantage for carbon capture in the cement industry.


Author(s):  
Min Jae Kim ◽  
Dong Hyeok Won ◽  
Tong Seop Kim

Exhaust gas recirculation (EGR) can be applied to a micro gas turbine (MGT) for the efficient removal of CO2 using post-combustion capture. The EGR increases the CO2 concentration of the exhaust gas for the capture process, which augments the capture rate. However, the performance penalty of the MGTs caused by the rise in the compressor inlet temperature due to the EGR is a drawback. In this research, we investigated the integration of an MGT, adopting EGR with liquid air energy storage (LAES), an emerging energy storage technology. LAES stores electric energy from renewables or the power grid in the form of cryogenic liquid air. The liquefied air is pressurized and regasified to generate electricity during peak demand hours. In our proposed system, a portion of the cryogenic air is injected into the MGT’s compressor inlet. The purpose of the injection is twofold. Firstly, it decreases the compressor inlet air temperature, which enhances the MGT performance, especially the power output. Secondly, it increases the carbon dioxide composition of the exhaust gas, which enhances the carbon capture performance. An MGT system, equipped with a post-combustion capture and integrated with the cryogenic air injection, was analyzed. The analysis shows that the system power, system efficiency, and CO2 capture rate were improved, with the heat duty of the carbon capture process reduced in accordance with the increase in cryogenic flow rate, as expected. Moreover, the heat duty of the carbon capture process decreased significantly due to the increase in temperature and O2 concentration in the cryogenic air.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3095 ◽  
Author(s):  
Calin-Cristian Cormos

Energy and economic penalties for CO2 capture are the main challenges in front of the carbon capture technologies. Chemical Looping Air Separation (CLAS) represents a potential solution for energy and cost-efficient oxygen production in comparison to the cryogenic method. This work is assessing the key techno-economic performances of a CLAS system using copper oxide as oxygen carrier integrated in coal and lignite-based oxy-combustion and gasification power plants. For comparison, similar combustion and gasification power plants using cryogenic air separation with and without carbon capture were considered as benchmark cases. The assessments were focused on large scale power plants with 350–500 MW net electricity output and 90% CO2 capture rate. As the results show, the utilization of CLAS system in coal and lignite-based oxy-combustion and gasification power plants is improving the key techno-economic indicators e.g., increasing the energy efficiency by about 5–10%, reduction of specific capital investments by about 12–18%, lower cost of electricity by about 8–11% as well as lower CO2 avoidance cost by about 17–27%. The highest techno-economic improvements being noticed for oxy-combustion cases since these plants are using more oxygen than gasification plants.


2021 ◽  
Author(s):  
Amélie Cécile Martin ◽  
François Lacouture ◽  
Philip Llewellyn ◽  
Laurent Mariac

Abstract To curtail the global warming increase to less than 2°C by 2050, the IPCC highlights Carbon Capture Utilization and Storage (CCUS) as a vital approach. TotalEnergies, following its ambition to become a responsible energy major, invests 10% of its R&D budget in CCUS to reduce the global process cost and help decarbonize our activities. TotalEnergies is both working to decarbonize its own assets and developing a transport and storage infrastructure in Europe, with notably Northern Lights an example of note. It is equally of interest how this transport/storage infrastructure can be of use for other sectors and as such how various full CCUS chains may emerge. This explains the interest to develop techno-economic tools to evaluate CO2 capture processes applied to a wide range of industries. CO2 that is an integral part of the manufacturing process, is particularly difficult to abate in any future scenario, and one particular industry, which is facing such a challenge is the cement sector. CCUS has been identified as a potential solution to help with this issue. The present paper outlines the outcomes of a techno-economic study evaluating CO2 capture technologies based on cement factory retrofitting. A literature review aimed at identifying the main characteristics of a typical European cement plant (capacity, process mode, pollutant composition in the flue gas…) was carried out. In this paper, a base case scenario of 90% absorption-based CO2 capture with monoethanolamine (MEA) is compared with four alternative CO2 capture approaches: –An absorption technology based on non-amine solvent.–An adsorption technology based on a Concentration Swing Adsorption process.–An oxyfuel technology derived from the R&D works performed during the CEMCAP project (European CO2 capture project).–A Calcium Looping technology with tail-end process configuration. For each of these approaches, the whole carbon capture chain has been considered: this includes flue gas pretreatment, CO2 conditioning (including compression), steam generation, and utilities. Using process simulations, engineering studies have been carried out and have provided Key Performance Indicators (KPIs) such as Capital Costs, Operation Costs and Global Warming Potential (primary energy consumption per ton of CO2 avoided). It enabled mapping the technologies with regards to the cost and volume of CO2 avoided, as well as providing for each of the technologies the break-even point for an eventual CO2 tax. Based on these KPIs, several facts have been highlighted: –The need to consider the whole process (including utilities, compression…) and not only the capture unit.–The development of new materials for adsorption and contactor design is already driving down costs.–The availability of waste heat can be a game-changer to implement a CO2 capture technology.–Technology comparisons are location and site-specific and cannot be taken as a basis for concept selection. TotalEnergies approach to CCUS is collaborative. With these full-scale techno-economical assessments, generated via quotations from industrial equipment providers and using Engineering, Procurement and Construction standards, this not only gives a basis for comparison, but also assists our discussions with partners to identify key technological development pathways.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4267
Author(s):  
Łukasz Sobol ◽  
Arkadiusz Dyjakon

The main sources of greenhouse gas emissions and air pollution from the transport sector are diesel- and gasoline-powered passenger cars. The combustion of large amounts of conventional fuels by cars contributes to a significant release of various compounds into the atmosphere, such as solid particles, nitrogen oxides, carbon monoxide, and carbon dioxide. In order to reduce these pollutants in places of their high concentration (especially in urban agglomerations), the use of ecological means of transport for daily driving is highly recommended. Electric vehicles (EV) are characterized by ecological potential due to their lack of direct emissions and low noise. However, in Poland and many other countries, electricity production is still based on fossil fuels which can significantly influence the indirect emissions of carbon dioxide into the atmosphere associated with battery charging. Thus, indirect emissions from electric cars may be comparable or even higher than direct emissions related to the use of traditional cars. Therefore, the aim of the work was to analyze the amount of carbon dioxide emissions associated with the use of electric vehicles for daily driving (City, Sedan, SUV) and their impact on the environment on a local and global scale. Based on the assumed daily number of kilometers driven by the vehicle and the collected certified catalog data (Car Info Nordic AB), the direct emissions generated by the internal combustion engines (ICE) were calculated for specific cars. These values were compared to the indirect emissions related to the source of electricity generation, for the calculation of which the CO2 emission coefficient for a particular energy source and energy mix was used, as well as reference values of electricity generation efficiency in a given combustion installation, in accordance with the KOBiZE (The National Centre for Emissions Management) and European Union regulation. Indirect emissions generated from non-renewable fuels (lignite, hard coal, natural gas, diesel oil, heating oil, municipal waste) and renewable emissions (wind energy, solar energy, hydro energy, biomass, biogas) were considered. The results indicated that for the Polish case study, indirect carbon dioxide emission associated with the daily driving of EV (distance of 26 km) ranges 2.49–3.28 kgCO2∙day−1. As a result, this indirect emission can be even higher than direct emissions associated with ICE usage (2.55–5.64 kgCO2∙day−1).


Author(s):  
Badal Dev Roy ◽  
R. Saravanan

The Turbocharger is a charge booster for internal combustion engines to ensure best engine performance at all speeds and road conditions especially at the higher load.  Random selection of turbocharger may lead to negative effects like surge and choke in the breathing of the engine. Appropriate selection or match of the turbocharger (Turbomatching) is a tedious task and expensive. But perfect match gives many distinguished advantages and it is a one time task per the engine kind. This study focuses to match the turbocharger to desired engine by simulation and on road test. The objective of work is to find the appropriateness of matching of turbochargers with trim 67 (B60J67), trim 68 (B60J68),  trim 70 (A58N70) and trim 72 (A58N72) for the TATA 497 TCIC -BS III engine. In the road-test (data-logger method) the road routes like highway and slope up were considered for evaluation. The operating conditions with respect various speeds, routes and simulated outputs were compared with the help of compressor map.


Sign in / Sign up

Export Citation Format

Share Document