scholarly journals Model-Based Range Prediction for Electric Cars and Trucks under Real-World Conditions

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5804
Author(s):  
Manfred Dollinger ◽  
Gerhard Fischerauer

The further development of electric mobility requires major scientific efforts to obtain reliable data for vehicle and drive development. Practical experience has repeatedly shown that vehicle data sheets do not contain realistic consumption and range figures. Since the fear of low range is a significant obstacle to the acceptance of electric mobility, a reliable database can provide developers with additional insights and create confidence among vehicle users. This study presents a detailed, yet easy-to-implement and modular physical model for both passenger and commercial battery electric vehicles. The model takes consumption-relevant parameters, such as seasonal influences, terrain character, and driving behavior, into account. Without any a posteriori parameter adjustments, an excellent agreement with known field data and other experimental observations is achieved. This validation conveys much credibility to model predictions regarding the real-world impact on energy consumption and cruising range in standardized driving cycles. Some of the conclusions, almost impossible to obtain experimentally, are that winter conditions and a hilly terrain each reduce the range by 7–9%, and aggressive driving reduces the range by up to 20%. The quantitative results also reveal the important contributions of recuperation and rolling resistance towards the overall energy budget.

2020 ◽  
Vol 13 (4) ◽  
pp. 102-113
Author(s):  
Loay M. Mubarak ◽  
Ahmed Al-Samari

This manuscript instrumented two light-duty passenger cars to construct real-world driving cycles for the Baghdad-Basrah highway road in Iraq using a data logger. The recorded data is conducted to obtain typical speed profiles for each vehicle. Each of the recruited vehicles is modelized using Advanced Vehicle Simulator and conducted on the associated created driving cycle to investigate fuel economy and analyze performance. Moreover, to inspect the influence of driving behavior on fuel consumption and emissions, the simulation process is re-implemented by substituting the conducted real-world driving cycle. The analyses are done for the first and second stages of simulation predictions to explore the fuel-penalty of aggressive driving behavior. The analysis for substitution predictions showed that fuel consumption could be reduced by 12.8% due to conducting vehicle under the more consistent real-world driving cycle. However, conducting vehicle under the more aggressive one would increase fuel consumption by 14.6%. The associated emissions change prediction due to the substitution is also achieved and presented.


Author(s):  
Sergey Vasil'ev ◽  
Vyacheslav Schedrin ◽  
Aleksandra Slabunova ◽  
Vladimir Slabunov

The aim of the research is a retrospective analysis of the history and stages of development of digital land reclamation in Russia, the definition of «Digital land reclamation» and trends in its further development. In the framework of the retrospective analysis the main stages of melioration formation are determined. To achieve the maximum effect of the «digital reclamation» requires full cooperation of practical experience and scientific potential accumulated throughout the history of the reclamation complex, and the latest achievements of science and technology, which is currently possible only through the full digitalization of reclamation activities. The introduction of «digital reclamation» will achieve greater potential and effect in the modernization of the reclamation industry in the «hightech industry», through the use of innovative developments and optimal management decisions.


Author(s):  
Yi Li ◽  
Di Peng ◽  
Lei Zu ◽  
Mingliang Fu ◽  
Yao Ma ◽  
...  
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1181
Author(s):  
Juanan Pereira

(1) Background: final year students of computer science engineering degrees must carry out a final degree project (FDP) in order to graduate. Students’ contributions to improve open source software (OSS) through FDPs can offer multiple benefits and challenges, both for the students, the instructors and for the project itself. This work reports on a practical experience developed by four students contributing to mature OSS projects during their FDPs, detailing how they addressed the multiple challenges involved, both from the students and teachers perspective. (2) Methods: we followed the work of four students contributing to two established OSS projects for two academic years and analyzed their work on GitHub and their responses to a survey. (3) Results: we obtained a set of specific recommendations for future practitioners and detailed a list of benefits achieved by steering FDP towards OSS contributions, for students, teachers and the OSS projects. (4) Conclusion: we find out that FDPs oriented towards enhancing OSS projects can introduce students into real-world, practical examples of software engineering principles, give them a boost in their confidence about their technical and communication skills and help them build a portfolio of contributions to daily used worldwide open source applications.


Author(s):  
Hannah Sievers ◽  
Angelika Joos ◽  
Mickaël Hiligsmann

Abstract Objective This study aims to assess stakeholder perceptions on the challenges and value of real-world evidence (RWE) post approval, the differences in regulatory and health technology assessment (HTA) real-world data (RWD) collection requirements under the German regulation for more safety in drug supply (GSAV), and future alignment opportunities to create a complementary framework for postapproval RWE requirements. Methods Eleven semistructured interviews were conducted purposively with pharmaceutical industry experts, regulatory authorities, health technology assessment bodies (HTAbs), and academia. The interview questions focused on the role of RWE post approval, the added value and challenges of RWE, the most important requirements for RWD collection, experience with registries as a source of RWD, perceptions on the GSAV law, RWE requirements in other countries, and the differences between regulatory and HTA requirements and alignment opportunities. The interviews were recorded, transcribed, and translated for coding in Nvivo to summarize the findings. Results All experts agree that RWE could close evidence gaps by showing the actual value of medicines in patients under real-world conditions. However, experts acknowledged certain challenges such as: (i) heterogeneous perspectives and differences in outcome measures for RWE generation and (ii) missing practical experience with RWD collected through mandatory registries within the German benefit assessment due to an unclear implementation of the GSAV. Conclusions This study revealed that all stakeholder groups recognize the added value of RWE but experience conflicting demands for RWD collection. Harmonizing requirements can be achieved through common postlicensing evidence generation (PLEG) plans and joint scientific advice to address uncertainties regarding evidence needs and to optimize drug development.


2001 ◽  
Vol 16 (4) ◽  
pp. 295-329 ◽  
Author(s):  
ANTHONY HUNTER

Numerous argumentation systems have been proposed in the literature. Yet there often appears to be a shortfall between proposed systems and possible applications. In other words, there seems to be a need for further development of proposals for argumentation systems before they can be used widely in decision-support or knowledge management. I believe that this shortfall can be bridged by taking a hybrid approach. Whilst formal foundations are vital, systems that incorporate some of the practical ideas found in some of the informal approaches may make the resulting hybrid systems more useful. In informal approaches, there is often an emphasis on using graphical notation with symbols that relate more closely to the real-world concepts to be modelled. There may also be the incorporation of an argument ontology oriented to the user domain. Furthermore, in informal approaches there can be greater consideration of how users interact with the models, such as allowing users to edit arguments and to weight influences on graphs representing arguments. In this paper, I discuss some of the features of argumentation, review some key formal argumentation systems, identify some of the strengths and weaknesses of these formal proposals and finally consider some ways to develop formal proposals to give hybrid argumentation systems. To focus my discussions, I will consider some applications, in particular an application in analysing structured news reports.


2021 ◽  
pp. 097282012110350
Author(s):  
Tripti Dhote ◽  
Chaitanya P.K. ◽  
Juhi Mandot

Small cars accounted for 75% of the cars sold in India; electrification of these cars and making them affordable was one of the major challenges apart from the infrastructure. Hence, leading automakers saw this as highly impracticable. However, Mahindra Electric Cars Pvt. Ltd., India’s only electric car maker, firmly believed that electric mobility, though in the nascent stage, is the future of the automotive sector. The case tries to deals with Mahindra Electric Cars Pvt. Ltd.’s opportunities and challenges, the pioneers in electric mobility in India in the wake of government decision. It raises certain imperative questions like: Is the Indian market ready for electric cars? What will be the likely impact on the current market scenario? Can the automaker create a favourable perception in consumers’ minds towards electric cars? Will this new category thrive in a hyper-competitive conventional market? This case is written based on insights provided by the company. The case authors interacted with the four-member Mahindra team in Bangalore, India, and got first-hand input.


2019 ◽  
Vol 45 ◽  
pp. 619-627 ◽  
Author(s):  
Triluck Koossalapeerom ◽  
Thaned Satiennam ◽  
Wichuda Satiennam ◽  
Watis Leelapatra ◽  
Atthapol Seedam ◽  
...  

2021 ◽  
pp. 146808742110387
Author(s):  
Stylianos Doulgeris ◽  
Zisimos Toumasatos ◽  
Maria Vittoria Prati ◽  
Carlo Beatrice ◽  
Zissis Samaras

Vehicles’ powertrain electrification is one of the key measures adopted by manufacturers in order to develop low emissions vehicles and reduce the CO2 emissions from passenger cars. High complexity of electrified powertrains increases the demand of cost-effective tools that can be used during the design of such powertrain architectures. Objective of the study is the proposal of a series of real-world velocity profiles that can be used during virtual design. To that aim, using three state of the art plug-in hybrid vehicles, a combined experimental, and simulation approach is followed to derive generic real-world cycles that can be used for the evaluation of the overall energy efficiency of electrified powertrains. The vehicles were tested under standard real driving emissions routes, real-world routes with reversed order (compared to a standard real driving emissions route) of urban, rural, motorway, and routes with high slope variation. To enhance the experimental activities, additional virtual mission profiles simulated using vehicle simulation models. Outcome of the study consists of specific driving cycles, designed based on standard real-world route, and a methodology for real-world data analysis and evaluation, along with the results from the assessment of the impact of different operational parameters on the total electrified powertrain.


Sign in / Sign up

Export Citation Format

Share Document