scholarly journals The H2020 McSAFER Project: Main Goals, Technical Work Program, and Status

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6348
Author(s):  
Victor Hugo Sanchez-Espinoza ◽  
Stephan Gabriel ◽  
Heikki Suikkanen ◽  
Joonas Telkkä ◽  
Ville Valtavirta ◽  
...  

This paper describes the main objectives, technical content, and status of the H2020 project entitled “High-performance advanced methods and experimental investigations for the safety evaluation of generic Small Modular Reactors (McSAFER)”. The main pillars of this project are the combination of safety-relevant thermal hydraulic experiments and numerical simulations of different approaches for safety evaluations of light water-cooled Small Modular Reactors (SMR). It describes the goals, the consortium, and the involved thermal hydraulic test facilities, e.g., the COSMOS-H (KIT), HWAT (KTH), and MOTEL (LUT), including the experimental programs. It also outlines the different safety assessment methodologies applied to four different SMR-designs, namely the CAREM (CNEA), SMART (KAERI), F-SMR (CEA), and NuScale. These methodologies are multiscale thermal hydraulics, conventional, low order, and high fidelity neutron physical methods used to demonstrate the inherent safety features of SMR-core designs under postulated design-basis-accident conditions. Finally, the status of the investigations is shortly discussed followed by the dissemination activities and an outlook.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Changpeng Wang ◽  
Siwei Zhang ◽  
Yuefei Zou ◽  
Hongzhao Ma ◽  
Donglang Jiang ◽  
...  

Abstract Background Some neuropsychological diseases are associated with abnormal thiamine metabolism, including Korsakoff–Wernicke syndrome and Alzheimer’s disease. However, in vivo detection of the status of brain thiamine metabolism is still unavailable and needs to be developed. Methods A novel PET tracer of 18F-deoxy-thiamine was synthesized using an automated module via a two-step route. The main quality control parameters, such as specific activity and radiochemical purity, were evaluated by high-performance liquid chromatography (HPLC). Radiochemical concentration was determined by radioactivity calibrator. Metabolic kinetics and the level of 18F-deoxy-thiamine in brains of mice and marmosets were studied by micro-positron emission tomography/computed tomography (PET/CT). In vivo stability, renal excretion rate, and biodistribution of 18F-deoxy-thiamine in the mice were assayed using HPLC and γ-counter, respectively. Also, the correlation between the retention of cerebral 18F-deoxy-thiamine in 60 min after injection as represented by the area under the curve (AUC) and blood thiamine levels was investigated. Results The 18F-deoxy-thiamine was stable both in vitro and in vivo. The uptake and clearance of 18F-deoxy-thiamine were quick in the mice. It reached the max standard uptake value (SUVmax) of 4.61 ± 0.53 in the liver within 1 min, 18.67 ± 7.04 in the kidney within half a minute. The SUV dropped to 0.72 ± 0.05 and 0.77 ± 0.35 after 60 min of injection in the liver and kidney, respectively. After injection, kidney, liver, and pancreas exhibited high accumulation level of 18F-deoxy-thiamine, while brain, muscle, fat, and gonad showed low accumulation concentration, consistent with previous reports on thiamine distribution in mice. Within 90 min after injection, the level of 18F-deoxy-thiamine in the brain of C57BL/6 mice with thiamine deficiency (TD) was 1.9 times higher than that in control mice, and was 3.1 times higher in ICR mice with TD than that in control mice. The AUC of the tracer in the brain of marmosets within 60 min was 29.33 ± 5.15 and negatively correlated with blood thiamine diphosphate levels (r = − 0.985, p = 0.015). Conclusion The 18F-deoxy-thiamine meets the requirements for ideal PET tracer for in vivo detecting the status of cerebral thiamine metabolism.


RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 14036-14046
Author(s):  
Binxuan Xie ◽  
Shimou Chen ◽  
Yong Chen ◽  
Lili Liu

The SGPE can achieve high performance and high safety features simultaneously.


2021 ◽  
Vol 11 (8) ◽  
pp. 3531
Author(s):  
Hesham M. Eraqi ◽  
Karim Soliman ◽  
Dalia Said ◽  
Omar R. Elezaby ◽  
Mohamed N. Moustafa ◽  
...  

Extensive research efforts have been devoted to identify and improve roadway features that impact safety. Maintaining roadway safety features relies on costly manual operations of regular road surveying and data analysis. This paper introduces an automatic roadway safety features detection approach, which harnesses the potential of artificial intelligence (AI) computer vision to make the process more efficient and less costly. Given a front-facing camera and a global positioning system (GPS) sensor, the proposed system automatically evaluates ten roadway safety features. The system is composed of an oriented (or rotated) object detection model, which solves an orientation encoding discontinuity problem to improve detection accuracy, and a rule-based roadway safety evaluation module. To train and validate the proposed model, a fully-annotated dataset for roadway safety features extraction was collected covering 473 km of roads. The proposed method baseline results are found encouraging when compared to the state-of-the-art models. Different oriented object detection strategies are presented and discussed, and the developed model resulted in improving the mean average precision (mAP) by 16.9% when compared with the literature. The roadway safety feature average prediction accuracy is 84.39% and ranges between 91.11% and 63.12%. The introduced model can pervasively enable/disable autonomous driving (AD) based on safety features of the road; and empower connected vehicles (CV) to send and receive estimated safety features, alerting drivers about black spots or relatively less-safe segments or roads.


2016 ◽  
Vol 113 (28) ◽  
pp. 7722-7726 ◽  
Author(s):  
Gavin O. Jones ◽  
Alexander Yuen ◽  
Rudy J. Wojtecki ◽  
James L. Hedrick ◽  
Jeannette M. García

It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers.


Author(s):  
Chiara Gastaldi ◽  
Muzio M. Gola

This paper furthers recent research by these authors. The starting point is the pre-optimization of solid dampers, which ensures that all dampers bound to “misbehave” are excluded since the early design stage. The authors now enlarge the scope of their investigations to explore those damper configurations selected inside the admissible design area. The purpose of the paper is to present a set of criteria apt to select a damper configuration which not only avoids unwanted situations, but in addition guarantees high performance under different design conditions. The analysis starts with the definition of a set of requirements a high performance damper should meet. In detail, the present investigation seeks to answer the following questions: in the low excitation regime, what is the frequency shift and the stiffening effect each damper can provide? for increasing excitation levels, which damper will start slipping sooner? in the high excitation regime, which damper provides the maximum dissipation? Like pre-optimization, it does not involve nonlinear finite element calculations, and unlike existing optimization procedures, is not linked to a specific set of blades the damper may be coupled to. The numerical prediction of the blade-damper coupled dynamics is here used only for validation purposes. The approach on which this paper rests is fully numerical; however, real contact parameters are taken from extensive experimental investigations made possible by those purposely developed test rigs which are the distinctive mark of the AERMEC Lab of Politecnico di Torino.


2019 ◽  
Vol 214 ◽  
pp. 08009 ◽  
Author(s):  
Matthias J. Schnepf ◽  
R. Florian von Cube ◽  
Max Fischer ◽  
Manuel Giffels ◽  
Christoph Heidecker ◽  
...  

Demand for computing resources in high energy physics (HEP) shows a highly dynamic behavior, while the provided resources by the Worldwide LHC Computing Grid (WLCG) remains static. It has become evident that opportunistic resources such as High Performance Computing (HPC) centers and commercial clouds are well suited to cover peak loads. However, the utilization of these resources gives rise to new levels of complexity, e.g. resources need to be managed highly dynamically and HEP applications require a very specific software environment usually not provided at opportunistic resources. Furthermore, aspects to consider are limitations in network bandwidth causing I/O-intensive workflows to run inefficiently. The key component to dynamically run HEP applications on opportunistic resources is the utilization of modern container and virtualization technologies. Based on these technologies, the Karlsruhe Institute of Technology (KIT) has developed ROCED, a resource manager to dynamically integrate and manage a variety of opportunistic resources. In combination with ROCED, HTCondor batch system acts as a powerful single entry point to all available computing resources, leading to a seamless and transparent integration of opportunistic resources into HEP computing. KIT is currently improving the resource management and job scheduling by focusing on I/O requirements of individual workflows, available network bandwidth as well as scalability. For these reasons, we are currently developing a new resource manager, called TARDIS. In this paper, we give an overview of the utilized technologies, the dynamic management, and integration of resources as well as the status of the I/O-based resource and job scheduling.


2020 ◽  
Vol 103 (6) ◽  
pp. 1441-1450
Author(s):  
Ya Yang ◽  
Xiangwu Liu ◽  
Qingtao Zhang ◽  
Ya Chen ◽  
Sumei Zhang ◽  
...  

Abstract Background Tea is a popular traditional non-alcoholic beverage worldwide. Flonicamid is a selective systemic pyridine carboxamide insecticide that is widely used for controlling tea leafhopper in tea. Objective The leaching rates, dissipation dynamics, and residue levels of flonicamid and its metabolites in tea leaves during processing and transferring were investigated to validate the safe risk in tea and transfer behavior using high performance liquid chromatography–tandem mass spectrometry with a convenient pretreatment method. Method The extracting method and immersion rate experiments were optimized by single factor analysis and orthogonal tests. The acetonitrile extracting solvent with 0.5% formic acid was used and optimal leaching conditions were obtained with a regime of 15 min immersion time, 100°C temperature, three immersions and a tea-to-water ratio of 1:50. Results Average recoveries in processed green tea and infusions were 80.85–98.75% with relative standard deviations <5.87%. LODs and LOQs of flonicamid, 4-trifluoromethylnicotinic acid (TFNA), N-(4-trifluoromethylnicotinoyl) glycine (TFNG), and 4-trifluoromethylnicotinamide (TFNA-AM) were 0.0013–0.350 and 0.004–1 μg/g, respectively. The processing factor of flonicamid was 0.36–5.52 during green tea manufacture. The leaching rates were 22.9-97.4% from processed tea to infusion. Conclusions The risk of long-term and short-term dietary intake of flonicamid was safe in tea infusions with the risk quotient (RQ) values <1 for the Chinese consumer. This work may provide guidance for safe and reasonable consumption of flonicamid in tea in China. Highlights The suitable leaching factors of flonicamid and its metabolites in tea infusions were optimized by orthogonal experimentation for the first time.


2012 ◽  
Vol 523-524 ◽  
pp. 445-450 ◽  
Author(s):  
Berend Denkena ◽  
Dennis Heinisch

Thermal shrink fit chucks are widely used in high performance machining where excellent concentricity and high torque transmission are required. It was reported that in those milling operations, severe damage of tools, workpieces, and also machine tools occurs due to an extraction of the milling tool out of the shrink fit chuck during the process. Although, theoretically the interference fit assembly should withstand certain process forces, milling tools are apparently pulled out under special process conditions. The resulting increase of the cutting depth often leads to tool overload and breakage. So far, the phenomenon of tool extraction could not be explained. This paper presents an experimental approach of the investigation of the phenomenon of axial tool extraction. Therefore, a unique type of test rig for main spindles and tool interfaces is used. Experimental investigations on dynamic force and torque combinations leading to tool extraction are described. Results show, that the holding force is not only affected by geometrical parameters of the shrink fit chuck, but also by the applied dynamic load.


Sign in / Sign up

Export Citation Format

Share Document