scholarly journals Energy Consumption When Transporting Pallet Loads Using a Forklift with an Anti Slip Pad Preventing Damage

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8423
Author(s):  
Pawel Zajac ◽  
Egidijus Dragasius ◽  
Tetiana Roik

A large number of processes for transporting and handling palletized goods using a forklift in logistics centers is usually associated with an increase in pallet and load damage. Therefore, first of all, the “damage mechanism” was identified. A classic “state of the art” analysis was conducted. The paper presents the essence of the authors’ hybrid idea of:—locking the load;—while increasing the coefficient of friction between the pallet and the forks of the forklift; but so as not to compromise on the existing functionality of the forklift forks. The idea turned out to be an innovation that required intellectual property protection, hence it was not only described in a paper but also patented. It is about an extra element that is not standard on forklifts—a forklift fork attachment. The paper discusses mechanical damage to loads involving a forklift, load damage test results, anti-slip forklift attachment, computational model of the attachment, prototype, and real-world testing of the attachment on a forklift in a logistics center. Design data from the FEM calculation system, photos of:—the prototype with components,—the prototype on tests in the logistics center were made available. The paper concludes with a pallet and load damage study performed at a logistics center and an insulation panel factory. The level of accuracy of the publication is detailed enough that the reader can make the attachment on their own and, using the content of the paper, adapt it to the needs of their own logistics system.

1989 ◽  
Vol 21 (10-11) ◽  
pp. 1421-1429
Author(s):  
D. T. Redmon ◽  
W. C. Boyle ◽  
B. G. Hellstrom

The background and theory of the offgas analysis procedure used in oxygen transfer testing of diffused aeration tanks is reviewed. Correlation of this method with other applicable procedures in parallel tests is reported. State-of-the-art equipment and accessories are described. Advantages of the procedure are identified, as are precautionary considerations regarding its use. Applications considered appropriate for its employment are delineated. Experience and test results in both Sweden and the U.S.A. on a variety of aeration devices are disclosed.


1971 ◽  
Vol 93 (4) ◽  
pp. 1225-1228 ◽  
Author(s):  
W. L. Starkey ◽  
T. G. Foster ◽  
S. M. Marco

A new design parameter, friction-instability, is defined in this paper. Friction-instability is a variation in the coefficient of friction which may occur at any time during the life of a brake lining. A friction-index is defined which measures this variation. A lining which has a high friction index may tend to cause an automobile to swerve either to the right or to the left. A unique experimental facility is described by means of which the friction-instability characteristics of brake linings can be measured. Test results using this facility are presented and interpreted. The friction-index is proposed as a new parameter which should be taken into consideration when brakes are designed and, developed. This index should be particularly useful as a quality control device to insure that machines which use mass-produced braking systems will perform in a safe and effective manner.


Author(s):  
C. Bagci ◽  
C. J. McClure ◽  
S. K. Rajavenkateswaran

Abstract The article investigates pocket bearings with contoured profiles of exponential forms on both surfaces inside and outside of the step boundary forming hydro-dynamic action surfaces, and develops optimum design data yielding efficient slider bearings with small pockets with higher load capacities than conventional pocket bearings. In the case of a pocket bearings, in addition to the Reynolds equation used for the regions inside and outside the pocket, the continuity equation along the pocket boundary is satisfied to form the complete model of the bearing. The optimum design data includes dimensionless load-, flow-, temperature rise-, power loss-, stiffness-, and the coefficient of friction factors. Incompressible lubricant with temperature dependent viscosity is considered. Detailed study of conventional pocket bearings with planar surfaces is included. Some optimum exponential pocket bearings yield up to 561 percent increase in load capacity as compared to the conventional tapered bearings.


1981 ◽  
Vol 103 (1) ◽  
pp. 73-82 ◽  
Author(s):  
H. Winter ◽  
H. Wilkesmann

The formulae of classical hydrodynamics are not suitable for the calculation of load capacity and power loss of worm gear drives. Thus a theoretical basis had to be developed for the comparison of different tooth profiles, materials of worm and worm wheel and lubricants. The data obtained were compared with test results. It proved that the coefficient of friction is an important influence factor.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dereje Berihun Sitotaw ◽  
Dustin Ahrendt ◽  
Yordan Kyosev ◽  
Abera Kechi Kabish

Abstract Stab-protective clothing is the most important component of safety equipment and it helps to save the lives of its wearers; therefore, it is designed to resist knife, nail, or needle attacks, especially to the upper body. In this paper, the essential requirements for stab-resistant armor are investigated based on an in-depth review of previous research and prototype test results. The combination of protection and comfort in armor vests is a particularly challenging task. Review of the state of the art technology responsible for the manufacture of stab-resistant clothes has revealed that their design and development should encompass the elements of comfort, freedom of movement, permeability, absorption, evaporation, and weight reductions to ensure excellent ergonomics and high wear comfort. The design as well as the production, weight, thickness, material types and properties, and the arrangement of scales determine the level of protection and comfort offered by stab-resistant vests. Currently, the production of stab-proof gear-based 3D printing technology is evaluated, using lightweight materials (aramid) in the form of segmented scales inspired by nature. As the protection performance and wear comfort of stab-proof gear is enhanced, the willingness of security, control, transport, custom, and correction officers to wear them can be significantly increased in an endeavor to ensure that fatal injuries will decrease significantly.


Author(s):  
John J. Aumuller ◽  
Jie Chen ◽  
Vincent A. Carucci

Delayed unit coker drums operate in a severe service environment that precludes long term reliability due to excessive shell bulging and cracking of shell joint and shell to skirt welds. Thermal fatigue is recognized as the leading damage mechanism and past work has provided an idealized description of the thermo-mechanical mechanism via local hot and cold spot formation to quantify a lower bound life estimate for shell weld failure. The present work extends this idealized thermo-mechanical damage model by evaluating actual field data to determine a potential upper bound life estimate. This assessment also provides insight into practical techniques for equipment operators to identify design and operational opportunities to extend the service life of coke drums for their specific service environments. A modern trend of specifying higher chromium and molybdenum alloy content for drum shell material in order to improve low cycle fatigue strength is seen to be problematic; rather, the use of lower alloy materials that are generally described as fatigue tough materials are better suited for the high strain-low cycle fatigue service environment of coke drums. Materials such as SA 204 C (C – ½ Mo) and SA 302 B (C – Mn – ½ Mo) or SA 302 C (C – Mn – ½ Mo – ½ Ni) are shown to be better candidates for construction in lieu of low chromium alloy steel materials such as SA 387 grades P11 (1¼ Cr – ½ Mo), P12 (1 Cr – ½ Mo), P22 (2¼ Cr – 1 Mo) and P21 (3 Cr – 1 Mo).


1976 ◽  
Vol 21 (3) ◽  
pp. 2-12
Author(s):  
Jan M. Drees

This paper presents an overview of the correlation of helicopter rotor performance and loads data from various tests and analyses. Information is included from U.S. Army‐sponsored tests conducted by Bell Helicopter Company for free‐flight full‐scale tests in the NASA‐Ames 40 × 80 wind tunnel, one‐fifth scale tests in the NASA‐Langley Transonic Dynamics Tunnel, and small‐scale tests of a rotor in air. These test data are compared with each other, where appropriate, and with calculated results. Typical examples illustrate the state of the art for correlation and indicate anomalies encountered. It is concluded that a procedure using theoretical analyses to aid in interpretation and evaluation of test results is essential to developing a science of correlation.


Author(s):  
A. W. Reichert ◽  
M. Janssen

Siemens heavy duty Gas Turbines have been well known for their high power output combined with high efficiency and reliability for more than 3 decades. Offering state of the art technology at all times, the requirements concerning the cooling and sealing air system have increased with technological development over the years. In particular the increase of the turbine inlet temperature and reduced NOx requirements demand a highly efficient cooling and sealing air system. The new Vx4.3A family of Siemens gas turbines with ISO turbine inlet temperatures of 1190°C in the power range of 70 to 240 MW uses an effective film cooling technique for the turbine stages 1 and 2 to ensure the minimum cooling air requirement possible. In addition, the application of film cooling enables the cooling system to be simplified. For example, in the new gas turbine family no intercooler and no cooling air booster for the first turbine vane are needed. This paper deals with the internal air system of Siemens gas turbines which supplies cooling and sealing air. A general overview is given and some problems and their technical solutions are discussed. Furthermore a state of the art calculation system for the prediction of the thermodynamic states of the cooling and sealing air is introduced. The calculation system is based on the flow calculation package Flowmaster (Flowmaster International Ltd.), which has been modified for the requirements of the internal air system. The comparison of computational results with measurements give a good impression of the high accuracy of the calculation method used.


Author(s):  
Christian Kunkel ◽  
Jan Werner ◽  
Daniel Franke ◽  
Heinz-Peter Schiffer ◽  
Fabian Wartzek ◽  
...  

Abstract With the well-known Transonic Compressor Darmstadt (TCD) in operation since 1994, profound knowledge in designing and operating a sophisticated test-rig is available at the Institute of Gas Turbines and Aerospace Propulsion of TU Darmstadt. During this period, TCD has been subject to a vast number of redesigns within different measurement campaigns (see [1], [2], [3], [4], [5], [6], [7], [8]). To expand the capabilities and ensure a sustainable process of compressor research, a new test facility was designed and built by the institute. The new test rig Transonic Compressor Darmstadt 2 (TCD2) features increased power for higher pressure ratios and higher mass-flow, a state of the art control system, increased flexibility towards different compressor geometries and modern data acquisition hardware and software. Following the successful commissioning of the test-rig in March 2018, a first measurement campaign has been conducted. Early test results regarding aerodynamic performance and aeroelastic effects of the test compressor are presented together with a detailed overview of test-rig infrastructure and control systems as well as the test compressor and the measurement hardware.


Sign in / Sign up

Export Citation Format

Share Document