scholarly journals Application of Multilayer Observer for a Drive System with Flexibility

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8479
Author(s):  
Karol Wróbel ◽  
Kacper Śleszycki ◽  
Krzysztof Szabat ◽  
Seiichiro Katsura

This paper proposes a new estimation algorithm based on the Luenberger observer methodology and multilayer concept. The proposed multi-layer Luenberger observer (MLO) is implemented in the control structure designated for a two-mass system. Two types of aggregation mechanism are evaluated in the paper. The MLO ensures better estimation quality of the mechanical state variables: motor speed, shaft torque, load speed and load torque, as compared to the classical single observer. The more accurate estimated states, the more precise closed-loop control is guaranteed. MLO is designated for the system where initial conditions of the plant are not known or the state variables can change rapidly (load torque in the considered case). The estimation algorithm and control strategy is evaluated through simulation and experimental tests. The obtained results confirm efficiency of the proposed MLO.

2021 ◽  
Vol 11 (9) ◽  
pp. 4136
Author(s):  
Rosario Pecora

Oleo-pneumatic landing gear is a complex mechanical system conceived to efficiently absorb and dissipate an aircraft’s kinetic energy at touchdown, thus reducing the impact load and acceleration transmitted to the airframe. Due to its significant influence on ground loads, this system is generally designed in parallel with the main structural components of the aircraft, such as the fuselage and wings. Robust numerical models for simulating landing gear impact dynamics are essential from the preliminary design stage in order to properly assess aircraft configuration and structural arrangements. Finite element (FE) analysis is a viable solution for supporting the design. However, regarding the oleo-pneumatic struts, FE-based simulation may become unpractical, since detailed models are required to obtain reliable results. Moreover, FE models could not be very versatile for accommodating the many design updates that usually occur at the beginning of the landing gear project or during the layout optimization process. In this work, a numerical method for simulating oleo-pneumatic landing gear drop dynamics is presented. To effectively support both the preliminary and advanced design of landing gear units, the proposed simulation approach rationally balances the level of sophistication of the adopted model with the need for accurate results. Although based on a formulation assuming only four state variables for the description of landing gear dynamics, the approach successfully accounts for all the relevant forces that arise during the drop and their influence on landing gear motion. A set of intercommunicating routines was implemented in MATLAB® environment to integrate the dynamic impact equations, starting from user-defined initial conditions and general parameters related to the geometric and structural configuration of the landing gear. The tool was then used to simulate a drop test of a reference landing gear, and the obtained results were successfully validated against available experimental data.


2001 ◽  
Vol 1 ◽  
pp. 170-180 ◽  
Author(s):  
Alaa El-Sadek ◽  
Mona Radwan ◽  
Jan Feyen

In this study, the transport and fate of nitrate within the soil profile and nitrate leaching to drains were analyzed by comparing historic field data with the simulation results of the DRAINMOD model. The nitrogen version of DRAINMOD was used to simulate the performance of the nitrogen transport and transformation of the Hooibeekhoeve experiment, situated in the sandy region of the Kempen (Belgium) and conducted for a 30-year (1969–1998) period. In the analysis, a continuous cropping with maize was assumed. Comparisons between experimentally measured and simulated state variables indicate that the nitrate concentrations in the soil and nitrate leaching to drains are controlled by the fertilizer practice, the initial conditions, and the rainfall depth and distribution. Furthermore, the study reveals that the model used gives a fair description of the nitrogen dynamics in the soil and subsurface drainage at field scale. From the comparative analysis between experimental data and simulation results it can also be concluded that the model after calibration is a useful tool to optimize as a function of the combination “climate-crop-soil-bottom boundary condition” the nitrogen application strategy resulting in an acceptable level of nitrate leaching for the environment.


2018 ◽  
Author(s):  
Adel Albaba ◽  
Massimiliano Schwarz ◽  
Corinna Wendeler ◽  
Bernard Loup ◽  
Luuk Dorren

Abstract. This paper presents a Discrete Element-based elasto-plastic-adhesive model which is adapted and tested for producing hillslope debris flows. The numerical model produces three phases of particle contacts: elastic, plastic and adhesion. The model capabilities of simulating different types of cohesive granular flows were tested with different ranges of flow velocities and heights. The basic model parameters, being the basal friction (ϕb) and normal restitution coefficient (ϵn), were calibrated using field experiments of hillslope debris flows impacting two sensors. Simulations of 50 m3 of material were carried out on a channelized surface that is 41 m long and 8 m wide. The calibration process was based on measurements of flow height, flow velocity and the pressure applied to a sensor. Results of the numerical model matched well those of the field data in terms of pressure and flow velocity while less agreement was observed for flow height. Those discrepancies in results were due in part to the deposition of material in the field test which are not reproducible in the model. A parametric study was conducted to further investigate that effect of model parameters and inclination angle on flow height, velocity and pressure. Results of best-fit model parameters against selected experimental tests suggested that a link might exist between the model parameters ϕb and ϵn and the initial conditions of the tested granular material (bulk density and water and fine contents). The good performance of the model against the full-scale field experiments encourages further investigation by conducting lab-scale experiments with detailed variation of water and fine content to better understand their link to the model's parameters.


2021 ◽  
Vol 20 ◽  
pp. 140-148
Author(s):  
Amir Salmaninejad ◽  
Rene V. Mayorga

A Direct Current (DC) Motor is usually supposed to be operated at a desired speed even if the load on the shaft is exposed to changes. One of its applications is in automatic door controllers like elevator automatic door drivers. Initially, to achieve this aim, a closed loop control can be applied. The speed feedback is usually prepared by a sensor (encoder or tachometer) coupled to the motor shaft. Most of these sensors do not always perform well, especially in elevator systems, where high levels of noise, physical tensions of the mobile car, and maintenance technicians walking on the car, make this environment too noisy. This Paper presents a new approach for precise closed loop control of the DC motor speed without a feedback sensor, while the output load is variable. The speed here is estimated by the Back EMF (BEMF) voltage obtained from the armature current. First, it is shown that a PID controller cannot control this process alone, and then intelligent controllers, Fuzzy Logic Controller (FLC) and Adaptive Neuro Fuzzy Inference Systems (ANFIS), assisting PID are applied to control this process. Finally, these controllers’ performance subjected to a variable mechanical load on the motor shaft are compared.


2021 ◽  
Vol 8 ◽  
Author(s):  
Serhat Ibrahim ◽  
Jan Christoph Krause ◽  
Alexander Olbrich ◽  
Annika Raatz

To further advance closed-loop control for soft robotics, suitable sensor and modeling strategies have to be investigated. Although there are many flexible and soft sensors available, the integration into the actuator and the use in a control loop is still challenging. Therefore, a state-space model for closed-loop low-level control of a fiber-reinforced actuator using pressure and orientation measurement is investigated. To do so, the integration of an inertial measurement unit and geometric modeling of actuator is presented. The piecewise constant curvature approach is used to describe the actuator’s shape and deformation variables. For low-level control, the chamber’s lengths are reconstructed from bending angles with a geometrical model and the identified material characteristics. For parameter identification and model validation, data from a camera tracking system is analyzed. Then, a closed-loop control of pressure and chambers’ length of the actuator is investigated. It will be shown, that the reconstruction model is suitable for estimating the state variables of the actuator. In addition, the use of the inertial measurement unit will demonstrate a cost-effective and compact sensor for soft pneumatic actuators.


Author(s):  
Eric Donald Dongmo ◽  
Kayode Stephen Ojo ◽  
Paul Woafo ◽  
Abdulahi Ndzi Njah

This paper introduces a new type of synchronization scheme, referred to as difference synchronization scheme, wherein the difference between the state variables of two master [slave] systems synchronizes with the state variable of a single slave [master] system. Using the Lyapunov stability theory and the active backstepping technique, controllers are derived to achieve the difference synchronization of three identical hyperchaotic Liu systems evolving from different initial conditions, as well as the difference synchronization of three nonidentical systems of different orders, comprising the 3D Lorenz chaotic system, 3D Chen chaotic system, and the 4D hyperchaotic Liu system. Numerical simulations are presented to demonstrate the validity and feasibility of the theoretical analysis. The development of difference synchronization scheme has increases the number of existing chaos synchronization scheme.


Author(s):  
Jiayi Su ◽  
Yuqin Weng ◽  
Susan C. Schneider ◽  
Edwin E. Yaz

Abstract In this work, a new approach to detect sensor and actuator intrusion for Cyber-Physical Systems using a bank of Kalman filters is presented. The case where the unknown type of the intrusion signal is considered first, using two Kalman filters in a bank to provide the conditional state estimates, then the unknown type of intrusion signal can be detected properly via the adaptive estimation algorithm. The case where the target (either sensor or actuator) of the intrusion signal is unknown is also considered, using four Kalman filters in a bank designed to detect if the intrusion signal is about to affect healthy sensor or actuator signal. To test these methods, a DC motor speed control system subject to attack by different types of sensor and actuator signals is simulated. Simulations show that different types of sensor and actuator intrusion signals can be detected properly without the knowledge of the nature and the type of these signals.


2019 ◽  
Vol 147 (9) ◽  
pp. 3445-3466 ◽  
Author(s):  
Andrés A. Pérez Hortal ◽  
Isztar Zawadzki ◽  
M. K. Yau

Abstract We introduce a new technique for the assimilation of precipitation observations, the localized ensemble mosaic assimilation (LEMA). The method constructs an analysis by selecting, for each vertical column in the model, the ensemble member with precipitation at the ground that is locally closest to the observed values. The proximity between the modeled and observed precipitation is determined by the mean absolute difference of precipitation intensity, converted to reflectivity and measured over a spatiotemporal window centered at each grid point of the model. The underlying hypothesis of the approach is that the ensemble members that are locally closer to the observed precipitation are more probable to be closer to the “truth” in the state variables than the other members. The initial conditions for the new forecast are obtained by nudging the background states toward the mosaic of the closest ensemble members (analysis) over a 30 min time interval, reducing the impacts of the imbalances at the boundaries between the different selected members. The potential of the method is studied using observing system simulation experiments (OSSEs) employing a small ensemble of 20 members. The ensemble is produced by the WRF Model, run at a horizontal grid spacing of 20 km. The experiments lend support to the validity of the hypothesis and allow the determination of the optimal parameters for the approach. In the context of OSSE, this new data assimilation technique is able to produce forecasts with considerable and long-lived error reductions in the fields of precipitation, temperature, humidity, and wind.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xiaojun Liu ◽  
Ling Hong ◽  
Lixin Yang ◽  
Dafeng Tang

In this paper, a new fractional-order discrete noninvertible map of cubic type is presented. Firstly, the stability of the equilibrium points for the map is examined. Secondly, the dynamics of the map with two different initial conditions is studied by numerical simulation when a parameter or a derivative order is varied. A series of attractors are displayed in various forms of periodic and chaotic ones. Furthermore, bifurcations with the simultaneous variation of both a parameter and the order are also analyzed in the three-dimensional space. Interior crises are found in the map as a parameter or an order varies. Thirdly, based on the stability theory of fractional-order discrete maps, a stabilization controller is proposed to control the chaos of the map and the asymptotic convergence of the state variables is determined. Finally, the synchronization between the proposed map and a fractional-order discrete Loren map is investigated. Numerical simulations are used to verify the effectiveness of the designed synchronization controllers.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 199 ◽  
Author(s):  
Kanwar Bharat Singh

Information about the vehicle sideslip angle is crucial for the successful implementation of advanced stability control systems. In production vehicles, sideslip angle is difficult to measure within the desired accuracy level because of high costs and other associated impracticalities. This paper presents a novel framework for estimation of the vehicle sideslip angle. The proposed algorithm utilizes an adaptive tire model in conjunction with a model-based observer. The proposed adaptive tire model is capable of coping with changes to the tire operating conditions. More specifically, extensions have been made to Pacejka's Magic Formula expressions for the tire cornering stiffness and peak grip level. These model extensions account for variations in the tire inflation pressure, load, tread depth and temperature. The vehicle sideslip estimation algorithm is evaluated through experimental tests done on a rear wheel drive (RWD) vehicle. Detailed experimental results show that the developed system can reliably estimate the vehicle sideslip angle during both steady state and transient maneuvers.


Sign in / Sign up

Export Citation Format

Share Document