scholarly journals An Urban Water Simulation Model for the Design, Testing and Economic Viability Assessment of Distributed Water Management Systems for a Circular Economy

2020 ◽  
Vol 2 (1) ◽  
pp. 14
Author(s):  
A. Liakopoulou ◽  
C. Makropoulos ◽  
D. Nikolopoulos ◽  
K. Monokrousou ◽  
G. Karakatsanis

The concept of Circular Economy, although not entirely new, has in recent years gained traction due to growing concern with regards to the Earth’s natural reserves. In this context, Sewer Mining, a wastewater management method based on extracting wastewater from local sewers for reuse applications, presents an interesting option that lies in the interplay between reuse at a household scale and centralized reuse at a wastewater treatment plant. As part of the EU-funded program NextGenWater, a new unit is being prepared for operation in Athens’s Plant Nursery, in Goudi. This paper examines the water flow within the proposed installation, using the Urban Water Optioneering Tool (UWOT). Further research is focused on the economic viability of Sewer Mining and the proposed investment. The results produced are promising regarding Sewer Mining’s capabilities and benefits, as well as its future prospects, in the hopes that this technology can provide an attractive alternative to conventional water sources within the urban water cycle.

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2764
Author(s):  
Argyro Plevri ◽  
Klio Monokrousou ◽  
Christos Makropoulos ◽  
Christos Lioumis ◽  
Nikolaos Tazes ◽  
...  

Water reuse and recycling is gaining momentum as a way to improve the circularity of cities, while recognizing the central role of water within a circular economy (CE) context. However, such interventions often depend on the location of wastewater treatment plants and the treatment technologies installed in their premises, while relying on an expensive piped network to ensure that treated wastewater gets transported from the treatment plant to the point of demand. Thus, the penetration level of treated wastewater as a source of non-potable supply in dense urban environments is limited. This paper focuses on the demonstration of a sewer mining (SM) unit as a source of treated wastewater, as part of a larger and more holistic configuration that examines all three ‘streams’ associated with water in CE: water, energy and materials. The application area is the Athens Plant Nursery, in the (water stressed) city of Athens, Greece. SM technology is in fact a mobile wastewater treatment unit in containers able to extract wastewater from local sewers, treat it directly and reuse at the point of demand even in urban environments with limited space. The unit consists of a membrane bioreactor unit (MBR) and a UV disinfection unit and produces high quality reclaimed water for irrigation and also for aquifer recharge during the winter. Furthermore, a short overview of the integrated nutrient and energy recovery subsystem is presented in order to conceptualise the holistic approach and circularity of the whole configuration. The SM technology demonstrates flexibility, scalability and replicability, which are important characteristics for innovation uptake within the emerging CE context and market.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3204
Author(s):  
Eva Gómez-Llanos ◽  
Agustín Matías-Sánchez ◽  
Pablo Durán-Barroso

In the context of efficient and sustainable management of the elements of the urban water cycle as an aim of the Water Framework Directive (WFD), the evaluation of indicators such as the water footprint (WF) and the carbon footprint (CF) in a wastewater treatment plant (WWTP) provides a quantification of the environmental impact, both negative and positive, which implies its exploitation. In this study, in addition to WF and CF quantification, a joint evaluation of both indicators was conducted. Consumption is indicated by the blue water footprint (WFBlue) and emissions by CF. Both are related to the operational grey water footprint (∆WFG,mef) in two ratios, WFR and CFR. In this way, the water consumed and gases emitted are measured according to the reduction range of the pollutant load of the discharge. The results for four WWTPs show operational scenarios for better management in accordance with the WFD.


Author(s):  
Marián García-Valiñas ◽  
Fernando Arbués

Urban water cycle services culminate in wastewater services; that is, with the collection, transport, and treatment of wastewater. Wastewater management in Spain is not a straightforward issue. In fact, the European Commission has initiated infringement procedures against Spain for not fully complying with the Urban Waste Water Treatment Directive. Yet, appropriate collection and treatment would require a large monetary investment that is increasingly difficult to carve out of existing government revenues. In this context, wastewater pricing emerges as a significant tool for achieving cost recovery and environmental protection aims. In Spain, local governments are responsible for providing wastewater services in urban areas and for setting the prices for those services. Spanish regional governments are in charge of specific pollution taxes on wastewater, which are included in the individual users’ water bills. Moreover, in most Spanish cities, the urban water tariffs for wastewater services (like water supply tariffs) are different for different users, representing the most common distinction between residential and nonresidential users. Additionally, specific tariffs are frequently imposed for different customer groups within both categories. In this respect, it is common to include pollution charges for industrial users, increasing their water prices according to the environmental impact of their wastewater discharges. The result is a very complex map of water-pricing and taxing in Spain.


2013 ◽  
Vol 14 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Kim Augustin ◽  
Anne-Katrin Skambraks ◽  
Zhiqiang Li ◽  
Thomas Giese ◽  
Ulf Rakelmann ◽  
...  

One of the largest urban development projects at present in Hamburg is the conversion of former military barracks into a new residential area for about 630 households, called Jenfelder Au. The urban design concept for this 35 ha area follows a high quality approach to develop a carbon-neutral, attractive neighbourhood for approx. 2,000 inhabitants abundant with green space and urban water. HAMBURG WASSER, Hamburg's water supply and wastewater utility, is rethinking the way of wastewater management by implementing an integrated concept for decentralised wastewater treatment and energy production – the so-called HAMBURG WATER Cycle® (HWC) – in this new residential area, based on source control of wastewater. Stormwater, greywater and blackwater are collected separately and then treated separately on site in Jenfelder Au. The realisation of the HWC will be the hitherto largest demonstration of a resource oriented sanitation concept working with vacuum technology for the collection of concentrated blackwater. This concept intends to establish synergy between wastewater management, waste management and energy production, and contributes to an improved local natural water cycle.


2020 ◽  
Author(s):  
Günter Langergraber ◽  
Natasa Atanasova

<p>The COST Action Circular City (CA17133; "Implementing nature-based solutions for creating a resourceful circular city") aims to establish a network testing the hypothesis that a circular flow system that implements nature-based solutions (NBS) for managing nutrients and resources within the urban biosphere will lead to a resilient, sustainable and healthy urban environment. To date, most NBS are implemented serving only one single purpose. Adopting the concept of circular economy by combining different types of services and returning resources to the city, would increase the benefits gained for urban areas.</p><p>The Action's main output will be a guideline on combined NBS and circular economy possibilities within the urban environment. The work to achieve this will be carried out in five working groups (WGs):</p><ul><li>WG1 "Built environment" investigates the NBS - circular economy aspect on building and settlement level with the main focus on vegetated building materials and resources to be obtained from the corresponding NBS.</li> <li>WG2 "Sustainable urban water utilization" considers the implementation of a save and functional water cycle within the urban biosphere, defines available resources within the water flow, performs risk assessment on urban water and evaluates NBS for storm water management and waste water treatment.</li> <li>WG3 "Resource recovery" aims to transform implemented NBS for mitigation or treatment purposes to sources for a variety of resources to be harvested, used, reused and recycled.</li> <li>WG4 "Urban Farming" facilitates the implementation of urban farming with main purpose of food production within a city, but additionally paying close attention to other resources available from urban farming, usually considered waste.</li> <li>Last but not least, WG5 "Transformation tools" coordinates and leads the interdisciplinary activities between the WGs with the main aim to facilitate implementation of NBS in circular cities by 1) investigate performance-based assessment tools, 2) developing simplified tools and information for stakeholders, and 3) establish public relations strategies and approaches.</li> </ul><p>The contribution will present the results already achieved by the WGs by summarizing main results from the review papers each WG has produced.</p>


2011 ◽  
Vol 10 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Vânia Figueira ◽  
Elizabete A. Serra ◽  
Ivone Vaz-Moreira ◽  
Teresa R. S. Brandão ◽  
Célia M. Manaia

This study aimed at assessing the role of ubiquitous (non-Escherichia coli) Enterobacteriaceae in the dissemination of antimicrobial resistance through the urban water cycle. Enterobacteriaceae isolated from a municipal wastewater treatment plant (111 isolates), urban water streams (33 isolates) and drinking water (123 isolates) were compared in terms of: (i) genera distribution, (ii) resistance to 12 antibiotics, and (iii) class 1 and class 2 integrons. The predominant bacterial genera were the same in the different types of water, although with a distinct pattern of species. The most prevalent resistance phenotypes were observed for amoxicillin, ticarcillin, cephalothin and sulphamethoxazole (24–59% in the three types of water). No resistance against ceftazidime or meropenem was observed. Resistance to cephalothin, amoxicillin and sulphamethoxazole was significantly more prevalent in drinking water, water streams and wastewater, respectively, than in the other types of water. It was possible to recognize antibiotic-resistance associations, namely for the pairs streptomycin–tetracycline (positive) and ticarcillin–cephalotin (negative). Class 1 and/or class 2 integrons with similar gene cassettes were detected in the three types of water. This study demonstrated that Enterobacteriaceae are important vehicles of antibiotic resistance, namely in drinking water.


Author(s):  
Les Dawes ◽  
Jim Reeves

The increasing scarcity of water in the world, along with rapid population increase in urban areas, gives reason for concern and highlights the need for integrating water and wastewater management practices. The uncontrolled growth in urban areas has made planning, management and expansion of water and wastewater infrastructure systems very difficult and expensive. In order to achieve sustainable wastewater treatment and promote the conservation of water and nutrient resources, this chapter advocates the need for a closed-loop treatment system approach, and the transformation of the traditional linear treatment systems into integrated cyclical treatment systems. The recent increased understanding of integrated resource management and a shift towards sustainable management and planning of water and wastewater infrastructure are also discussed.


2011 ◽  
Vol 64 (3) ◽  
pp. 541-556 ◽  
Author(s):  
C. Sablayrolles ◽  
A. Breton ◽  
C. Vialle ◽  
C. Vignoles ◽  
M. Montréjaud-Vignoles

Application of the European Water Framework Directive requires Member States to have better understanding of the quality of surface waters in order to improve knowledge of priority pollutants. Xenobiotics in urban receiving waters are an emerging concern. This study proposes a screening campaign of nine molecular species of xenobiotics in a separated sewer system. Five sites were investigated over one year in Toulouse (France) using quantitative monitoring. For each sample, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, nonylphenols, diethelhexylphthalate, linear alkylbenzene sulphonates, methyl tert-butylether, total hydrocarbons, estradiol and ethinylestradiol were analysed. Ground, rain and roof collected water concentrations are similar to treated wastewater levels. Run-off water was the most polluted of the five types investigated, discharged into the aquatic environment. The wastewater treatment plant reduced xenobiotic concentrations by 66% before discharge into the environment. Regarding environmental quality standards, observed concentrations in waters were in compliance with standards. The results show that xenobiotic concentrations are variable over time and space in all urban water compartments.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1830 ◽  
Author(s):  
Joep Hagenvoort ◽  
Mar Ortega-Reig ◽  
Salut Botella ◽  
Carla García ◽  
Ana de Luis ◽  
...  

One of the most important challenges that agriculture faces is sustainable water management and its adaptation to climate change. This adaptation is more important in regions where recurrent draughts and overexploitation of water resources happen. However, historical irrigation systems, such as the Real Acequia de Moncada (RAM) in Valencia, have found innovative approaches to deal with this phenomenon. This paper analyzes the case of Massamagrell and Puçol, which reused the treated waste-water of the closest waste-water treatment plant (WWTP). The study focused from a circular economy perspective on the technological, agronomical, and social implications of this decision. Results show that there are clear benefits for both farmers and WWTP managers. On the one hand, additional nutrients and regularity in their water supply benefit farmers. On the other, WWTP managers can reuse the treated effluent in the system, contributing to the closure of the water cycle and avoiding pumping the treated water into the sea. However, more detailed information and coordination is needed among the different stakeholders. Questions regarding the illegal connection of waste pipes with the traditional irrigation or the payment of pumping costs for reuse have gone unanswered, and there is a need for better reflection from all stakeholders.


2020 ◽  
Vol 19 (4) ◽  
pp. 598-617 ◽  
Author(s):  
S.V. Ratner

Subject. The article considers the concept of circular economy, which has originated relatively recently in the academic literature, and is now increasingly recognized in many countries at the national level. In the European Union, the transition to circular economy is viewed as an opportunity to improve competitiveness of the European Union, protect businesses from resource shortages and fluctuating prices for raw materials and supplies, and a way to increase employment and innovation. Objectives. The aim of the study is to analyze the incentives developed by the European Commission for moving to circular economy, and to assess their effectiveness on the basis of statistical analysis. Methods. I employ general scientific methods of research. Results. The analysis of the EU Action Plan for the Circular Economy enabled to conclude that the results of the recent research in circular economy barriers, eco-innovation, technology and infrastructure were successfully integrated into the framework of this document. Understanding the root causes holding back the circular economy development and the balanced combination of economic and administrative incentives strengthened the Action Plan, and it contributed to the circular economy development in the EU. Conclusions. The measures to stimulate the development of the circular economy proposed in the European Action Plan can be viewed as a prototype for designing similar strategies in other countries, including Russia. Meanwhile, a more detailed analysis of barriers to the circular economy at the level of individual countries and regions is needed.


Sign in / Sign up

Export Citation Format

Share Document