scholarly journals Evaluation of the Foliar Damage That Threatens a Millennial-Age Tree, Araucaria araucana (Molina) K. Koch, Using Leaf Waxes

Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 59
Author(s):  
Gerald Cifuentes ◽  
Sergio Contreras ◽  
Carol Cerda-Peña

A. araucana is an endemic species of the temperate forests from Chile and Argentina; protected in both countries and categorized as in danger of extinction. Individuals of this species have begun to show foliar damage (i.e., discoloration) in branches and upper parts. The discoloration begins from the base to the top and from the trunk to the branches with necrotic rings appearing; in some cases causing death; and is currently attributed to an as yet unknown disease. This study focuses on the first protective layer of plants against environmental stress and pathogens; known as leaf waxes. The abundance and distribution of three classes of leaf waxes (long chain fatty acids; alkanes and alcohols) were measured in healthy individuals of A. araucana from different sites and individuals that present foliar damage (sick individuals). In the case of sick individuals; their leaf waxes were measured considering the level of leaf damage; that is; leaves without; medium and full foliar damage. The most abundant class of leaf wax in both sick and healthy individuals was fatty acids; followed by alkanes and then alcohols; with common dominant chains; C28 fatty acid; C29 alkane and C24 alcohol. Sick individuals have higher abundances of alkanes and alcohols than healthy individuals. The leaves of sick individuals have lower values of distribution indices (the carbon preference index of fatty acids and average chain length of alkanes) as foliar damage increases that are interpreted as a reduction of in vivo biosynthesis of waxes. This is the first evidence of A. araucana response to a still unknown disease that is killing individuals of this endemic species.

1971 ◽  
Vol 26 (03) ◽  
pp. 488-492 ◽  
Author(s):  
Th B. Tschopp ◽  
H.-R Baumgartner ◽  
A Studer

SummaryIn rabbits and cats Congo red administered intravenously causes severe thrombocytopenia and ultrastructural alterations of platelets and leucocytes, similar to those produced by some fatty acids and endotoxin. Transient leucopenia is followed by leucocytosis. In contrast, incubation of Congo red in citrated blood or platelet rich plasma has no effect. Therefore, an indirect mechanism is postulated to explain the in vivo effect of Congo red.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Ashraf Talaat Youssef

The pandemic of COVID-19 had started in Wuhan city china in late 2019 with a subsequent worldwide spread. The viral infection can seriousely affect multiple organs mainly lungs, kidneys, heart, liver and brain and may lead to respiratory, renal, cardiac or hepatic failure.Vascular thrombosis of unexplained mechanism that may lead to widespread blood clots in multiple organs and cytokine storms that result of overstimulation of the immune system subsequent of lung damage may lead to sudden decompensation due to hypotension and more damage to liver, kidney, brain or lungs.Until now no drug had proved efficient in getting rid of the problem and controlling the pandemic mainly depends on preventive measures.Many preventive measures can be considered to prevent the worldwide spread of viral transmission. Polyunsaturated long chain fatty acids (PUFAs) and the medium chain saturated fatty acids (MCSFAs) and their corresponding monoglycerides had high antiviral activities against the enveloped viruses which reach to more than 10,000 -fold reduction in the viral titres in vitro and in vivo after testing of its gastric aspirate, and can contribute to the systemic immunity against the enveloped viruses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Goc ◽  
Aleksandra Niedzwiecki ◽  
Matthias Rath

AbstractThe strain SARS-CoV-2, newly emerged in late 2019, has been identified as the cause of COVID-19 and the pandemic declared by WHO in early 2020. Although lipids have been shown to possess antiviral efficacy, little is currently known about lipid compounds with anti-SARS-CoV-2 binding and entry properties. To address this issue, we screened, overall, 17 polyunsaturated fatty acids, monounsaturated fatty acids and saturated fatty acids, as wells as lipid-soluble vitamins. In performing target-based ligand screening utilizing the RBD-SARS-CoV-2 sequence, we observed that polyunsaturated fatty acids most effectively interfere with binding to hACE2, the receptor for SARS-CoV-2. Using a spike protein pseudo-virus, we also found that linolenic acid and eicosapentaenoic acid significantly block the entry of SARS-CoV-2. In addition, eicosapentaenoic acid showed higher efficacy than linolenic acid in reducing activity of TMPRSS2 and cathepsin L proteases, but neither of the fatty acids affected their expression at the protein level. Also, neither reduction of hACE2 activity nor binding to the hACE2 receptor upon treatment with these two fatty acids was observed. Although further in vivo experiments are warranted to validate the current findings, our study provides a new insight into the role of lipids as antiviral compounds against the SARS-CoV-2 strain.


Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 3198-3204 ◽  
Author(s):  
G Stamatoyannopoulos ◽  
CA Blau ◽  
B Nakamoto ◽  
B Josephson ◽  
Q Li ◽  
...  

Abstract Butyrate induces fetal hemoglobin (HbF) synthesis in cultures of erythroid progenitors, in primates, and in man. The mechanism by which this compound stimulates gamma-globin synthesis is unknown. In the course of butyrate catabolism, beta oxidation by mitochondrial enzymes results in the formation of two acetate molecules from each molecule of butyrate. Studies were performed to determine whether acetate itself induces HbF synthesis. In erythroid burst-forming unit (BFU-E) cultures from normal persons, and individuals with sickle cell disease and umbilical-cord blood, dose-dependent increases in gamma-globin protein and gamma mRNA were consistently observed in response to increasing acetate concentrations. In BFU-E cultures from normal adults and patients with sickle cell disease, the ratio of gamma/gamma + beta mRNA increased twofold to fivefold in response to acetate, whereas the percentage of BFU-E progeny staining with an anti-gamma monoclonal antibody (MoAb) increased approximately twofold. Acetate-induced increases in gamma-gene expression were also noted in the progeny of umbilical cord blood BFU-E, although the magnitude of change in response to acetate was less because of a higher baseline of gamma- chain production. The effect of acetate on HbF induction in vivo was evaluated using transgenic mouse and primate models. A transgenic mouse bearing a 2.5-kb mu locus control region (mu LCR) cassette linked to a 3.3-kb A gamma gene displayed a near twofold increase in gamma mRNA during a 10-day infusion of sodium acetate at a dose of 1.5 g/kg/d. Sodium acetate administration in baboons, in doses ranging from 1.5 to 6 g/kg/d by continuous intravenous infusion, also resulted in the stimulation of gamma-globin synthesis, with the percentage of HbF- containing reticulocytes (F reticulocytes) approaching 30%. Surprisingly, a dose-response effect of acetate on HbF induction was not observed in the baboons, and HbF induction was not sustained with prolonged acetate administration. These results suggest that both two- carbon fatty acids (acetate) and four-carbon fatty acids (butyrate) stimulate synthesis of HbF in vivo.


Author(s):  
Reilly M. Blocho ◽  
Richard W. Smith ◽  
Mark R. Noll

AbstractThe purpose of this study was to observe how the composition of organic matter (OM) and the extent of anoxia during deposition within the Marcellus Formation in New York varied by distance from the sediment source in eastern New York. Lipid biomarkers (n-alkanes and fatty acids) in the extractable organic component (bitumen) of the shale samples were analyzed, and proxies such as the average chain length (ACL), aquatic to terrestrial ratio (ATR) and carbon preference index (CPI) of n-alkanes were calculated. Fatty acids were relatively non-abundant due to the age of the shale bed, but n-alkane distributions revealed that the primary component of the OM was terrigenous plants. The presence of shorter n-alkane chain lengths in the samples indicated that there was also a minor component of phytoplankton and algal (marine) sourced OM. Whole rock analyses were also conducted, and cerium anomalies were calculated as a proxy for anoxia. All samples had a negative anomaly value, indicating anoxic conditions during deposition. Two samples, however, contained values close to zero and thus were determined to have suboxic conditions. Anoxia and total organic matter (TOM) did not show any spatial trends across the basin, which may be caused by varying depths within the basin during deposition. A correlation between nickel concentrations and TOM was observed and indicates that algae was the primary source of the marine OM, which supports the lipid biomarker analysis. It was determined that the kerogen type of the Marcellus Formation in New York State is type III, consistent with a methane-forming shale bed.


2006 ◽  
Vol 6 (2) ◽  
pp. 328-336 ◽  
Author(s):  
Kariona A. Grabińska ◽  
Paula Magnelli ◽  
Phillips W. Robbins

ABSTRACT Chs4p (Cal2/Csd4/Skt5) was identified as a protein factor physically interacting with Chs3p, the catalytic subunit of chitin synthase III (CSIII), and is indispensable for its enzymatic activity in vivo. Chs4p contains a putative farnesyl attachment site at the C-terminal end (CVIM motif) conserved in Chs4p of Saccharomyces cerevisiae and other fungi. Several previous reports questioned the role of Chs4p prenylation in chitin biosynthesis. In this study we reinvestigated the function of Chs4p prenylation. We provide evidence that Chs4p is farnesylated by showing that purified Chs4p is recognized by anti-farnesyl antibody and is a substrate for farnesyl transferase (FTase) in vitro and that inactivation of FTase increases the amount of unmodified Chs4p in yeast cells. We demonstrate that abolition of Chs4p prenylation causes a ∼60% decrease in CSIII activity, which is correlated with a ∼30% decrease in chitin content and with increased resistance to the chitin binding compound calcofluor white. Furthermore, we show that lack of Chs4p prenylation decreases the average chain length of the chitin polymer. Prenylation of Chs4p, however, is not a factor that mediates plasma membrane association of the protein. Our results provide evidence that the prenyl moiety attached to Chs4p is a factor modulating the activity of CSIII both in vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document