scholarly journals Forest Phenology Shifts in Response to Climate Change over China–Mongolia–Russia International Economic Corridor

Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 757
Author(s):  
Lingxue Yu ◽  
Zhuoran Yan ◽  
Shuwen Zhang

Vegetation phenology is a sensitive indicator of climate change. With the intensification of global warming, the changes in growing seasons of various vegetation types have been widely documented across the world. However, as one of the most vulnerable regions in response to the global climate change, the phenological responses and associated mechanisms in mid–high latitude forests are still not fully understood. In this study, long-term changes in forest phenology and the associated relationship with the temperature and snow water equivalent in the China–Mongolia–Russia International Economic Corridor were examined by analyzing the satellite-measured normalized difference vegetation index and the meteorological observation data during 1982 to 2015. The average start date of the growing season (SOS) of the forest ecosystem in our study area advanced at a rate of 2.5 days/decade, while the end date of the growing season (EOS) was delayed at a rate of 2.3 days/decade, contributing to a growing season that was approximately 15 days longer in the 2010s compared to that in 1980s. A higher April temperature is beneficial to the advance in the SOS, and a higher summer temperature has the potential to extend the EOS in the forest ecosystem. However, our results also suggest that a single temperature cannot fully explain the advance of the SOS, as well as the delay in the EOS. The preseason Snow Water Equivalent (SWE) is also an essential factor in influencing the growing season. A higher SWE in February and March and lower SWE in April tend to advance the SOS, while higher SWE in pre-year December and lower SWE in current year October are beneficial to the extension of the EOS.

2021 ◽  
Vol 13 (4) ◽  
pp. 669
Author(s):  
Hanchen Duan ◽  
Xian Xue ◽  
Tao Wang ◽  
Wenping Kang ◽  
Jie Liao ◽  
...  

Alpine meadow and alpine steppe are the two most widely distributed nonzonal vegetation types in the Qinghai-Tibet Plateau. In the context of global climate change, the differences in spatial-temporal variation trends and their responses to climate change are discussed. It is of great significance to reveal the response of the Qinghai-Tibet Plateau to global climate change and the construction of ecological security barriers. This study takes alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau as the research objects. The normalized difference vegetation index (NDVI) data and meteorological data were used as the data sources between 2000 and 2018. By using the mean value method, threshold method, trend analysis method and correlation analysis method, the spatial and temporal variation trends in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau were compared and analyzed, and their differences in the responses to climate change were discussed. The results showed the following: (1) The growing season length of alpine meadow was 145~289 d, while that of alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau was 161~273 d, and their growing season lengths were significantly shorter than that of alpine meadow. (2) The annual variation trends of the growing season NDVI for the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau increased obviously, but their fluctuation range and change rate were significantly different. (3) The overall vegetation improvement in the Qinghai-Tibet Plateau was primarily dominated by alpine steppe and alpine meadow, while the degradation was primarily dominated by alpine meadow. (4) The responses between the growing season NDVI and climatic factors in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau had great spatial heterogeneity in the Qinghai-Tibet Plateau. These findings provide evidence towards understanding the characteristics of the different vegetation types in the Qinghai-Tibet Plateau and their spatial differences in response to climate change.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yuhao Feng ◽  
Haojie Su ◽  
Zhiyao Tang ◽  
Shaopeng Wang ◽  
Xia Zhao ◽  
...  

AbstractGlobal climate change likely alters the structure and function of vegetation and the stability of terrestrial ecosystems. It is therefore important to assess the factors controlling ecosystem resilience from local to global scales. Here we assess terrestrial vegetation resilience over the past 35 years using early warning indicators calculated from normalized difference vegetation index data. On a local scale we find that climate change reduced the resilience of ecosystems in 64.5% of the global terrestrial vegetated area. Temperature had a greater influence on vegetation resilience than precipitation, while climate mean state had a greater influence than climate variability. However, there is no evidence for decreased ecological resilience on larger scales. Instead, climate warming increased spatial asynchrony of vegetation which buffered the global-scale impacts on resilience. We suggest that the response of terrestrial ecosystem resilience to global climate change is scale-dependent and influenced by spatial asynchrony on the global scale.


2021 ◽  
Vol 193 (4) ◽  
Author(s):  
Stefan Erasmi ◽  
Michael Klinge ◽  
Choimaa Dulamsuren ◽  
Florian Schneider ◽  
Markus Hauck

AbstractThe monitoring of the spatial and temporal dynamics of vegetation productivity is important in the context of carbon sequestration by terrestrial ecosystems from the atmosphere. The accessibility of the full archive of medium-resolution earth observation data for multiple decades dramatically improved the potential of remote sensing to support global climate change and terrestrial carbon cycle studies. We investigated a dense time series of multi-sensor Landsat Normalized Difference Vegetation Index (NDVI) data at the southern fringe of the boreal forests in the Mongolian forest-steppe with regard to the ability to capture the annual variability in radial stemwood increment and thus forest productivity. Forest productivity was assessed from dendrochronological series of Siberian larch (Larix sibirica) from 15 plots in forest patches of different ages and stand sizes. The results revealed a strong correlation between the maximum growing season NDVI of forest sites and tree ring width over an observation period of 20 years. This relationship was independent of the forest stand size and of the landscape’s forest-to-grassland ratio. We conclude from the consistent findings of our case study that the maximum growing season NDVI can be used for retrospective modelling of forest productivity over larger areas. The usefulness of grassland NDVI as a proxy for forest NDVI to monitor forest productivity in semi-arid areas could only partially be confirmed. Spatial and temporal inconsistencies between forest and grassland NDVI are a consequence of different physiological and ecological vegetation properties. Due to coarse spatial resolution of available satellite data, previous studies were not able to account for small-scaled land-cover patches like fragmented forest in the forest-steppe. Landsat satellite-time series were able to separate those effects and thus may contribute to a better understanding of the impact of global climate change on natural ecosystems.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 594
Author(s):  
Rafa Tasnim ◽  
Francis Drummond ◽  
Yong-Jiang Zhang

Maine, USA is the largest producer of wild blueberries (Vaccinium angustifolium Aiton), an important native North American fruit crop. Blueberry fields are mainly distributed in coastal glacial outwash plains which might not experience the same climate change patterns as the whole region. It is important to analyze the climate change patterns of wild blueberry fields and determine how they affect crop health so fields can be managed more efficiently under climate change. Trends in the maximum (Tmax), minimum (Tmin) and average (Tavg) temperatures, total precipitation (Ptotal), and potential evapotranspiration (PET) were evaluated for 26 wild blueberry fields in Downeast Maine during the growing season (May–September) over the past 40 years. The effects of these climate variables on the Maximum Enhanced Vegetation Index (EVImax) were evaluated using Remote Sensing products and Geographic Information System (GIS) tools. We found differences in the increase in growing season Tmax, Tmin, Tavg, and Ptotal between those fields and the overall spatial average for the region (state of Maine), as well as among the blueberry fields. The maximum, minimum, and average temperatures of the studied 26 wild blueberry fields in Downeast, Maine showed higher rates of increase than those of the entire region during the last 40 years. Fields closer to the coast showed higher rates of warming compared with the fields more distant from the coast. Consequently, PET has been also increasing in wild blueberry fields, with those at higher elevations showing lower increasing rates. Optimum climatic conditions (threshold values) during the growing season were explored based on observed significant quadratic relationships between the climate variables (Tmax and Ptotal), PET, and EVImax for those fields. An optimum Tmax and PET for EVImax at 22.4 °C and 145 mm/month suggest potential negative effects of further warming and increasing PET on crop health and productivity. These climate change patterns and associated physiological relationships, as well as threshold values, could provide important information for the planning and development of optimal management techniques for wild blueberry fields experiencing climate change.


2021 ◽  
Author(s):  
Thibault Mathevet ◽  
Cyril Thébault ◽  
Jérôme Mansons ◽  
Matthieu Le Lay ◽  
Audrey Valery ◽  
...  

<p>The aim of this communication is to present a study on climate variability and change on snow water equivalent (SWE) and streamflow over the 1900-2100 period in a mediteranean and moutainuous area.  It is based on SWE and streamflow observations, past reconstructions (1900-2018) and future GIEC scenarii (up to 2100) of some snow courses and hydrological stations situated within the French Southern Alps (Mercantour Natural Parc). This has been conducted by EDF (French hydropower company) and Mercantour Natural Parc.</p><p>This issue became particularly important since a decade, especially in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production or impacts on mountainous ecosystems (fauna and flora). As a water resources manager in French mountainuous regions, EDF developed and managed a large hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurements of a hundred of snow courses within the French Alps. EDF have been operating an automatic SWE sensors network, complementary to historical snow course network. Based on numerous SWE observations time-series and snow modelization (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2018 period. These reconstructions have been extented to 1900 using 20 CR (20<sup>th</sup> century reanalyses by NOAA) reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii (+4.5 W/m² and + 8.5 W/m² hypotheses). In the scope of this study, Mercantour Natural Parc is particularly interested by snow scenarii in the future and its impacts on their local flora and fauna.</p><p>Considering observations within Durance watershed and Mercantour region, this communication focuses on: (1) long term (1900-2018) analyses of variability and trend of hydrometeorological and snow variables (total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length, streamflow regimes) , (2) long term variability of snow and hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii.</p><p>Comparing old period (1950-1984) to recent period (1984-2018), quantitative results within these regions roughly shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season duration by 15 days. Characterization of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. Then, this communication focuses on impacts on long-term time scales (2050, 2100). This long term change of snow dynamics within moutainuous regions both impacts (1) water resources management, (2) snow resorts and artificial snow production developments or (3) ecosystems dynamics.Connected to the evolution of snow seasonality, the impacts on hydrological regime and some streamflow signatures allow to characterize the possible evolution of water resources in this mediteranean and moutianuous region This study allowed to provide some local quantitative scenarii.</p>


2020 ◽  
Vol 12 (8) ◽  
pp. 1332 ◽  
Author(s):  
Linghui Guo ◽  
Liyuan Zuo ◽  
Jiangbo Gao ◽  
Yuan Jiang ◽  
Yongling Zhang ◽  
...  

An understanding of the response of interannual vegetation variations to climate change is critical for the future projection of ecosystem processes and developing effective coping strategies. In this study, the spatial pattern of interannual variability in the growing season normalized difference vegetation index (NDVI) for different biomes and its relationships with climate variables were investigated in Inner Mongolia during 1982–2015 by jointly using linear regression, geographical detector, and geographically weighted regression methodologies. The result showed that the greatest variability of the growing season NDVI occurred in typical steppe and desert steppe, with forest and desert most stable. The interannual variability of NDVI differed monthly among biomes, showing a time gradient of the largest variation from northeast to southwest. NDVI interannual variability was significantly related to that of the corresponding temperature and precipitation for each biome, characterized by an obvious spatial heterogeneity and time lag effect marked in the later period of the growing season. Additionally, the large slope of NDVI variation to temperature for desert implied that desert tended to amplify temperature variations, whereas other biomes displayed a capacity to buffer climate fluctuations. These findings highlight the relationships between vegetation variability and climate variability, which could be used to support the adaptive management of vegetation resources in the context of climate change.


2018 ◽  
Vol 22 (2) ◽  
pp. 1593-1614 ◽  
Author(s):  
Florian Hanzer ◽  
Kristian Förster ◽  
Johanna Nemec ◽  
Ulrich Strasser

Abstract. A physically based hydroclimatological model (AMUNDSEN) is used to assess future climate change impacts on the cryosphere and hydrology of the Ötztal Alps (Austria) until 2100. The model is run in 100 m spatial and 3 h temporal resolution using in total 31 downscaled, bias-corrected, and temporally disaggregated EURO-CORDEX climate projections for the representative concentration pathways (RCPs) 2.6, 4.5, and 8.5 scenarios as forcing data, making this – to date – the most detailed study for this region in terms of process representation and range of considered climate projections. Changes in snow coverage, glacierization, and hydrological regimes are discussed both for a larger area encompassing the Ötztal Alps (1850 km2, 862–3770 m a.s.l.) as well as for seven catchments in the area with varying size (11–165 km2) and glacierization (24–77 %). Results show generally declining snow amounts with moderate decreases (0–20 % depending on the emission scenario) of mean annual snow water equivalent in high elevations (> 2500 m a.s.l.) until the end of the century. The largest decreases, amounting to up to 25–80 %, are projected to occur in elevations below 1500 m a.s.l. Glaciers in the region will continue to retreat strongly, leaving only 4–20 % of the initial (as of 2006) ice volume left by 2100. Total and summer (JJA) runoff will change little during the early 21st century (2011–2040) with simulated decreases (compared to 1997–2006) of up to 11 % (total) and 13 % (summer) depending on catchment and scenario, whereas runoff volumes decrease by up to 39 % (total) and 47 % (summer) towards the end of the century (2071–2100), accompanied by a shift in peak flows from July towards June.


2018 ◽  
Vol 40 (2) ◽  
pp. 205
Author(s):  
Xu-Juan Cao ◽  
Qing-Zhu Gao ◽  
Ganjurjav Hasbagan ◽  
Yan Liang ◽  
Wen-Han Li ◽  
...  

Climate change will affect how the Normalised Difference Vegetation Index (NDVI), which is correlated with climate factors, varies in space and over time. The Mongolian Plateau is an arid and semi-arid area, 64% covered by grassland, which is extremely sensitive to climate change. Its climate has shown a warming and drying trend at both annual and seasonal scales. We analysed NDVI and climate variation characteristics and the relationships between them for Mongolian Plateau grasslands from 1981 to 2013. The results showed spatial and temporal differences in the variation of NDVI. Precipitation showed the strongest correlation with NDVI (43% of plateau area correlated with total annual precipitation and 44% with total precipitation in the growing season, from May to September), followed by potential evapotranspiration (27% annual, and 30% growing season), temperature (7% annual, 16% growing season) and cloud cover (10% annual, 12% growing season). These findings confirm that moisture is the most important limiting factor for grassland vegetation growth on the Mongolian Plateau. Changes in land use help to explain variations in NDVI in 40% of the plateau, where no correlation with climate factors was found. Our results indicate that vegetation primary productivity will decrease if warming and drying trends continue but decreases will be less substantial if further warming, predicted as highly likely, is not accompanied by further drying, for which predictions are less certain. Continuing spatial and temporal variability can be expected, including as a result of land use changes.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1007 ◽  
Author(s):  
Haoming Xia ◽  
Yaochen Qin ◽  
Gary Feng ◽  
Qingmin Meng ◽  
Yaoping Cui ◽  
...  

Forest ecosystems in an ecotone and their dynamics to climate change are growing ecological and environmental concerns. Phenology is one of the most critical biological indicators of climate change impacts on forest dynamics. In this study, we estimated and visualized the spatiotemporal patterns of forest phenology from 2001 to 2017 in the Qinling Mountains (QMs) based on the enhanced vegetation index (EVI) from MODerate-resolution Imaging Spectroradiometer (MODIS). We further analyzed this data to reveal the impacts of climate change and topography on the start of the growing season (SOS), end of the growing season (EOS), and the length of growing season (LOS). Our results showed that forest phenology metrics were very sensitive to changes in elevation, with a 2.4 days delayed SOS, 1.4 days advanced EOS, and 3.8 days shortened LOS for every 100 m increase in altitude. During the study period, on average, SOS advanced by 0.13 days year−1, EOS was delayed by 0.22 days year−1, and LOS increased by 0.35 day year−1. The phenological advanced and delayed speed across different elevation is not consistent. The speed of elevation-induced advanced SOS increased slightly with elevation, and the speed of elevation-induced delayed EOS shift reached a maximum value of 1500 m from 2001 to 2017. The sensitivity of SOS and EOS to preseason temperature displays that an increase of 1 °C in the regionally averaged preseason temperature would advance the average SOS by 1.23 days and delay the average EOS by 0.72 days, respectively. This study improved our understanding of the recent variability of forest phenology in mountain ecotones and explored the correlation between forest phenology and climate variables in the context of the ongoing climate warming.


2019 ◽  
Vol 11 (20) ◽  
pp. 2421 ◽  
Author(s):  
Li ◽  
Liu ◽  
Liu ◽  
Li ◽  
Xu

Vegetation dynamics are sensitive to climate change and human activities, as vegetation interacts with the hydrosphere, atmosphere, and biosphere. The Yarlung Zangbo River (YZR) basin, with the vulnerable ecological environment, has experienced a series of natural disasters since the new millennium. Therefore, in this study, the vegetation dynamic variations and their associated responses to environmental changes in the YZR basin were investigated based on Normalized Difference Vegetation Index (NDVI) and Global Land Data Assimilation System (GLDAS) data from 2000 to 2016. Results showed that (1) the YZR basin showed an obvious vegetation greening process with a significant increase of the growing season NDVI (Zc = 2.31, p < 0.05), which was mainly attributed to the wide greening tendency of the downstream region that accounted for over 50% area of the YZR basin. (2) Regions with significant greening accounted for 25.4% of the basin and were mainly concentrated in the Nyang River and Parlung Tsangpo River sub-basins. On the contrary, the browning regions accounted for <25% of the basin and were mostly distributed in the urbanized cities of the midstream, implying a significant influence of human activities on vegetation greening. (3) The elevation dependency of the vegetation in the YZR basin was significant, showing that the vegetation of the low-altitude regions was better than that of the high-altitude regions. The greening rate exhibited a significantly more complicated relationship with the elevation, which increased with elevated altitude (above 3500 m) and decreased with elevated altitude (below 3500 m). (4) Significantly positive correlations between the growing season NDVI and surface air temperature were detected, which were mainly distributed in the snow-dominated sub-basins, indicating that glaciers and snow melting processes induced by global warming play an important role in vegetation growth. Although basin-wide non-significant negative correlations were found between precipitation and growing season NDVI, positive influences of precipitation on vegetation greening occurred in the arid and semi-arid upstream region. These findings could provide important information for ecological environment protection in the YZR basin and other high mountain regions.


Sign in / Sign up

Export Citation Format

Share Document