scholarly journals Predicting the Potential Habitat of Three Endangered Species of Carpinus genus under Climate Change and Human Activity

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1216
Author(s):  
Jiejie Sun ◽  
Lei Feng ◽  
Tongli Wang ◽  
Xiangni Tian ◽  
Xiao He ◽  
...  

The impact of climate change and human activities on endangered plants has been a serious concern in forest ecology. Some Carpinus plants have become extinct. Thus, we need to pay more attention to the Carpinus plants that are not yet extinct but are endangered. Here, we employed the species distribution model (SDM) considering different climate change scenarios and human footprint to test the potential habitat changes of three Carpinus species (C. oblongifolia, C. tientaiensis, and C. purpurinervis) in the future. Our results showed that the mean diurnal range of temperature (MDRT), isothermality, mean temperature of wettest quarter, and human footprint were the most influential factors determining the distribution of C. oblongifolia. Precipitation seasonality (coefficient of variation), MDRT, and precipitation of driest quarter were the most important climatic factors affecting C. tientaiensis. The minimum temperature of the coldest month was the most important factor in the distribution of C. purpurinervis. Our results also showed that the three species had different adaptability and habitat change trends under the future climate change scenarios, although they belong to the same genus. The potential habitats of C. oblongifolia would expand in the future, while the potential habitats of C. tientaiensis and C. purpurinervis would decrease for the same period. The predicted changes of these three endangered species on temporal and spatial patterns could provide a theoretical basis for their conservation strategies.

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 637 ◽  
Author(s):  
Tim van der Schriek ◽  
Konstantinos V. Varotsos ◽  
Christos Giannakopoulos ◽  
Dimitra Founda

This is the first study to look at future temporal urban heath island (UHI) trends of Athens (Greece) under different UHI intensity regimes. Historical changes in the Athens UHI, spanning 1971–2016, were assessed by contrasting two air temperature records from stable meteorological stations in contrasting urban and rural settings. Subsequently, we used a five-member regional climate model (RCM) sub-ensemble from EURO-CORDEX with a horizontal resolution of 0.11° (~12 × 12 km) to simulate air temperature data, spanning the period 1976–2100, for the two station sites. Three future emissions scenarios (RCP2.6, RCP4.5, and RCP8.5) were implanted in the simulations after 2005 covering the period 2006–2100. Two 20-year historical reference periods (1976–1995 and 1996–2015) were selected with contrasting UHI regimes; the second period had a stronger intensity. The daily maximum and minimum air temperature data (Tmax and Tmin) for the two reference periods were perturbed to two future periods, 2046–2065 and 2076–2095, under the three RCPs, by applying the empirical quantile mapping (eqm) bias-adjusting method. This novel approach allows us to assess future temperature developments in Athens under two UHI intensity regimes that are mainly forced by differences in air pollution and heat input. We found that the future frequency of days with Tmax > 37 °C in Athens was only different from rural background values under the intense UHI regime. Thus, the impact of heatwaves on the urban environment of Athens is dependent on UHI intensity. There is a large increase in the future frequency of nights with Tmin > 26 °C in Athens under all UHI regimes and climate scenarios; these events remain comparatively rare at the rural site. This large urban amplification of the frequency of extremely hot nights is likely caused by air pollution. Consequently, local mitigation policies aimed at decreasing urban atmospheric pollution are expected to be highly effective in reducing urban temperatures and extreme heat events in Athens under future climate change scenarios. Such policies directly have multiple benefits, including reduced electricity (energy) needs, improved living quality and strong health advantages (heat- and pollution-related illness/deaths).


Author(s):  
Pedram Mahdavi ◽  
Hossein Ghorbanizadeh Kharazi ◽  
Hossein Eslami ◽  
Narges Zohrabi ◽  
Majid Razaz

Abstract Global warming affected by human activities causes changes in the regime of rivers. Rivers are one of the most vital sources that supply fresh water. Therefore, management, planning, and proper use of rivers will be crucial for future climate change conditions. This study investigated the monitoring of hydrological drought in a future period to examine the impact of climate change on the discharging flow of the Zard River basin in Iran. Zard River is an important supplier of fresh and agricultural water in a vast area of Khuzestan province in Iran. A continuous rainfall-runoff model based on Soil Moisture Accounting (SMA) algorithm was applied to simulate the discharge flow under 10 scenarios (obtained from LARS-WG.6 software) of future climate change. Then, the Stream-flow Drought Index (SDI) and the Standard Precipitation Index (SPI) were calculated for each climate change scenario for the future period (2041–2060). The results of the meteorological drought assessment showed that near normal and moderate droughts had higher proportions among other drought conditions. Moreover, the hydrological drought assessment showed the occurrence of two new droughts (severe and extreme) conditions for the future period (2041–2060) that has never happened in the past (1997–2016).


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.


2015 ◽  
Vol 7 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Ali Fares ◽  
Ripendra Awal ◽  
Samira Fares ◽  
Alton B. Johnson ◽  
Hector Valenzuela

The impact of potential future climate change scenarios on the irrigation water requirements (IRRs) of two major agricultural crops (coffee and seed corn) in Hawai'i was studied using the Irrigation Management System (IManSys) model. In addition to IRRs calculations, IManSys calculates runoff, deep percolation, canopy interception, and effective rainfall based on plant growth parameters, site specific soil hydrological properties, irrigation system efficiency, and long-term daily weather data. Irrigation water requirements of two crops were simulated using historical climate data and different levels of atmospheric CO2 (330, 550, 710 and 970 ppm), temperature (+1.1 and +6.4 °C) and precipitation (±5, ±10 and ±20%) chosen based on the Intergovernmental Panel on Climate Change (IPCC) AR4 projections under reference, B1, A1B1 and A1F1 emission scenarios. IRRs decreased as CO2 emission increased. The average percentage decrease in IRRs for seed corn is higher than that of coffee. However, runoff, rain canopy interception, and deep percolation below the root zone increased as precipitation increased. Canopy interception and drainage increased with increased CO2 emission. Evapotranspiration responded positively to air temperature rise, and as a result, IRRs increased as well. Further studies using crop models will predict crop yield responses to these different irrigation scenarios.


2021 ◽  

Abstract This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "Ticks" focuses on ticks (although tick-borne pathogens creep in) and whether or not changes in climate affect the tick biosphere, from physiology to ecology. Section 3 on "Disease" focuses on the tick-host-pathogen biosphere, ranging from the triangle of tick-host-pathogen molecular interactions to disease ecology in various regions and ecosystems of the world. Each of these three sections ends with a synopsis that aims to give a brief overview of all the expert opinions within the section. The book concludes with Section 4 (Final Synopsis and Future Predictions). This synopsis attempts to summarize evidence provided by the experts of tangible impacts of climate change on ticks and tick-borne infections. In constructing their expert opinions, contributors give their views on what the future might hold. The final synopsis provides a snapshot of their expert thoughts on the future.


2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


Author(s):  
K. Lin ◽  
W. Zhai ◽  
S. Huang ◽  
Z. Liu

Abstract. The impact of future climate change on the runoff for the Dongjiang River basin, South China, has been investigated with the Soil and Water Assessment Tool (SWAT). First, the SWAT model was applied in the three sub-basins of the Dongjiang River basin, and calibrated for the period of 1970–1975, and validated for the period of 1976–1985. Then the hydrological response under climate change and land use scenario in the next 40 years (2011–2050) was studied. The future weather data was generated by using the weather generators of SWAT, based on the trend of the observed data series (1966–2005). The results showed that under the future climate change and LUCC scenario, the annual runoff of the three sub-basins all decreased. Its impacts on annual runoff were –6.87%, –6.54%, and –18.16% for the Shuntian, Lantang, and Yuecheng sub-basins respectively, compared with the baseline period 1966–2005. The results of this study could be a reference for regional water resources management since Dongjiang River provides crucial water supplies to Guangdong Province and the District of Hong Kong in China.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1120 ◽  
Author(s):  
Jie Li ◽  
Guan Liu ◽  
Qi Lu ◽  
Yanru Zhang ◽  
Guoqing Li ◽  
...  

Since climate change significantly affects global biodiversity, a reasonable assessment of the vulnerability of species in response to climate change is crucial for conservation. Most existing methods estimate the impact of climate change on the vulnerability of species by projecting the change of a species’ distribution range. This single-component evaluation ignores the impact of other components on vulnerability. In this study, Populus davidiana (David’s aspen), a tree species widely used in afforestation projects, was selected as the research subject under four future climate change scenarios (representative concentration pathway (RCP)2.6, RCP4.5, RCP6.0, and RCP8.5). Exposure components of range change as well as the degree of fragmentation, degree of human disturbance, and degree of protection were considered simultaneously. Then, a multicomponent vulnerability index was established to assess the effect of future climate change on the vulnerability of P. davidiana in China. The results show that the distribution range of P. davidiana will expand to the northwest of China under future climate change scenarios, which will lead to an increased degree of protection and a decreased degree of human disturbance, and hardly any change in the degree of fragmentation. The multicomponent vulnerability index values of P. davidiana under the four emission scenarios are all positive by 2070, ranging from 14.05 to 38.18, which fully indicates that future climate change will be conducive to the survival of P. davidiana. This study provides a reference for the development of conservation strategies for the species as well as a methodological case study for multicomponent assessment of species vulnerability to future climate change.


Sign in / Sign up

Export Citation Format

Share Document